Effect of treatment with probiotics in the reduction of altered levels of the lipid profile in humans and rats: a systematic review

Arturo Martínez Colóna1, Marcos Meneses Mayoa2, Leticia Lillo Ahuacatitana3

aUniversidad Anáhuac México, Facultad de Ciencias de la Salud, Estado de México

ID ORCID:
1https://orcid.org/0009-0004-3240-4162, 2https://orcid.org/0000-0001-7381-6690, 3https://orcid.org/0009-0001-3387-6071

https://doi.org/10.36105/psrua.2023v3n6.02

ABSTRACT

Introduction: Evidence suggests that the use of probiotics can prevent or help in the treatment of diseases such as obesity, acute infectious diarrhea, irritable bowel syndrome, liver problems, and the correction of hyperlipidemia, whether in total cholesterol, c-HDL, c-LDL or triglycerides. Probiotic strains have been studied so that with various mechanisms they can decrease lipid levels in children, adults and rats. Objective: To demonstrate the lipid-lowering effect of some probiotic strains tested in humans and rats, by compiling research that supports it. Methods: A search was carried out for articles with a year of publication between 2013 and 2023, experimental, observational and cohort studies published in English, full text available and analysis of the decrease in some lipid profile marker due to the use of probiotics. The MESH terms and the Boolean operators used for the search were “probiotics, lipid-lowering, children; Adults; rats and lipid profile”. Data sources: the databases used were PubMed, Google Scholar, Elsevier, Clinical Key, and ScienceDirect. Results: From a total of 2150 articles, 30 were included. After the analysis of the selected articles, the results reveal that probiotics have a beneficial effect on the lipid profile by 25.01%. Total cholesterol level was reduced by 16.65%, c-LDL 32.02% and c-HDL was raised by 21.71%. Conclusion: Supplementation with specific strains of probiotics has a lipid-lowering effect, it especially reduces hypercholesterolemia through various mechanisms, but more studies are required to determine the dosage and treatment time.

Key words: probiotics; lipid-lowering; children; adults; rats and lipid profile.
RESUMEN

Introducción: Las evidencias sugieren que el uso de probióticos puede prevenir o ayudar en el tratamiento de enfermedades como la obesidad, diarrea aguda infecciosa, síndrome de intestino irritable, problemas hepáticos y la corrección de la hiperlipidemia ya sea del colesterol total, HDL-C, LDL-C o triglicéridos. Se han estudiado cepas probióticas que con diversos mecanismos pueden disminuir los niveles lipídicos en niños, adultos y ratas. Objetivo: Evidenciar el efecto hipolipemiante de algunas cepas probióticas probadas en humanos y ratas, recopilando investigaciones que avalen. Métodos: Se realizó una búsqueda de artículos con año de publicación entre 2013 a 2023, estudios experimentales, observacionales y de cohortes publicados en inglés, texto completo disponible y análisis de la disminución de algún marcador del perfil de lípidos por el uso de probióticos. Los términos MESH y los operadores booleanos utilizados para la búsqueda fueron “probióticos, hipolipemiante, niños; adultos; ratas y perfil de lípidos”. Fuentes de datos: las bases de datos utilizadas fueron PubMed, Google Scholar, Elsevier, Clinical Key y ScienceDirect. Resultados: De 2150 artículos, 30 fueron incluidos. Después del análisis de los artículos seleccionados, los resultados revelan que los probióticos tienen un efecto benéfico sobre el perfil de lípidos en un 25,01%. Se redujo 16,65% el nivel de colesterol total, 32,02% LDL-C y elevando el HDL-C un 21,71%. Conclusión: La suplementación con cepas específicas de probióticos tiene efecto hipolipemiante, en especial es reductor de la hipercolesterolemia a través de diversos mecanismos, pero se requieren más estudios para determinar la dosificación y el tiempo de tratamiento.

Palabras clave: probióticos; hipolipemiante; niños; adultos; ratas; perfil de lípidos.

INTRODUCTION

Dyslipidemias are alterations of lipid metabolism, they are associated with atherosclerotic process and ischemic processes. The cardiovascular risk to which each of them is predisposed is different, depending on the type of lipoprotein that is altered and its concentration, total cholesterol levels and serum triglycerides. The National Health and Nutrition Survey (ENSANUT) 2020, in Mexico, states that the most common dyslipidemias in adults were hypercholesterolemia (26,1%), hypertriglyceridemia (49%) and low-density cholesterol (c-HDL) level (28,2%). The objective of the treatments for alterations in the lipid profile is largely focused on reducing the levels of total cholesterol, low-density lipoproteins (c-LDL), elevated triglyceride values and increasing high-density lipoproteins (c-HDL) to prevent the stiffness of the arteries due to the generation of atherogenic plaque, cerebrovascular accidents that have poor prognoses, increasing morbidity and mortality.

Cholesterol is part of all steroid hormones and vitamin D analogues, therefore, a deficiency of cholesterol in the circulation can result in an inability to distribute vitamins K and E to vital organs, causing severe consequences. In contrast, hypercholesterolemia, or cholesterol buildup, is caused by excess dietary cholesterol or a genetic abnormality and can result in cardiovascular disease and death.

Lipoproteins in plasma transport lipids to tissues for energy utilization, lipid storage, steroid hormone production, and bile acid formation. Lipoproteins are categorized based on their density, and c-LDL, c-HDL, IDL, VLDL, and chylomicrons can be isolated by ultracentrifugation. Triglycerides have a transcendent role in the energy reserve of our organism, the normal value of serum triglycerides should be less than 150 mg/dL, since above this figure alterations are observed in the increase of c-LDL, that are related to atherogenic risk. The 2018 Guidelines of various associations such as the American Heart Association (AHA), American Diabetes Association (ADA), expert panel on Cholesterol Levels in Children for cholesterol management mentions acceptable ranges for total cholesterol (TC) concentrations > 200 mg/dL, c-LDL <130 mg/dL, c-HDL > 60 mg/dL and TG < 150 mg/dL in adults and in children TC > 170 mg/dL, c-LDL <110 mg/dL, c-HDL > 45 mg/dL, TG < 75 mg/dL (0-9 years) and < 90 mg/dL (10-19 years).

Probiotics in the reduction of altered levels of the lipid profile

Probiotics are defined as those live microorganisms that, when administered in adequate amounts, confer a beneficial effect on the host. They are considered safe for human consumption. The most researched and used probiotics in the clinical area include bacteria of the following genera: Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Propionibacterium, Bifidobacterium, Bacillus, Streptococcus, Enterococcus, Escherichia coli and yeasts of the genus Saccharomyces. According to Lye et al. (2010), some bacterial strains or consortia have been shown to reduce cholesterol, lipoprotein, and triglyceride levels. There are different...
mechanisms proposed to explain the reduction in c-LDL, in relation to the intake of probiotics, which include:

1. Deconjugation of bile acids, by the production of enzymes such as bile salt hydrolase, which interfere with the ability of cholesterol to be incorporated into mixed micelles, thus reducing its absorption.

2. Interference of the bioavailability of cholesterol in the small intestine through the absorption of cholesterol in bacterial cell walls.

3. Production of short-chain fatty acids through colonic fermentation of indigestible carbohydrates, which can inhibit cholesterol synthesis and suppress the release of free fatty acids from adipose deposits, a substrate for triglyceride synthesis.\(^{10}\)

The cholesterol-lowering ability of probiotics has been extensively reviewed through various clinical trials. Several mechanisms have been proposed, but one of the most accepted is the ability to deconjugate bile by the production of bile salt hydrolase (BSH). Deconjugated bile salts are less reabsorbed in the intestines compared to conjugated salts, resulting in greater fecal excretion because they are more hydrophobic. Cholesterol, being the precursor of bile salts, is used to produce new bile salts, resulting in a decrease in serum concentrations.\(^{11}\)

To prove that probiotics do not cause harm to the consumer, \textit{in vitro} tests are necessary, followed by preclinical tests in animal models such as rodents and finally in humans.\(^ {12}\) Rats are a type of mammals that are used in research due to their physical and genetic characteristics similar to humans, in addition, their size is small, they are accessible, they adapt to all habitats, among others.\(^ {13}\) Experimentation with rodents continues to be the most used in biomedical research, its purpose is to obtain the greater good through protocols and methodologies reviewed, approved and supervised by ethics committees to guarantee their well-being from birth.\(^ {14}\)

The objective of this review is to determine the effect that some probiotic strains have on the reduction in abnormal levels of total cholesterol, triglycerides and c-LDL, as well as the increase in serum c-HDL.

METHODS

Literature search

This review was done according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.\(^ {15}\)

Search strategy

The databases required to search for scientific articles were PubMed, Google Scholar, Elsevier, ClinicalKey, and Science-Direct. The MESH terms and the Boolean operators used for the search were “probiotics”, “lipid-lowering”, “children”, “adults”, “rats”, “lipid profile”, studies published in English and Spanish.

Eligibility criteria

All research articles with a year of publication between 2013 and 2023, experimental, observational, and cohort studies published in English and Spanish. The degree of efficacy of some probiotic strains on markers including the lipid profile (TC, c-HDL, c-LDL, and triglycerides) was determined. In addition, the inclusion of the use of probiotics in patients with dyslipidemia is proposed, since conventional treatment includes only drugs and eating plans to reach normal levels of lipid markers.

Study selection

Article records were individually recognized and identified by three investigators and, if necessary, decisions to include or not include a record were made by consent and agreement between them.

Quality assessment

One of the researchers performed the evaluation of the records using the Microsoft Excel data tool. Investigators had full access to all registration, evaluation, and data extraction spreadsheets.
RESULTS

The schematic representation for the selection of the articles is found in Figure 1. A total of 2150 articles were found, then a debugging was carried out to eliminate some duplicates, leaving 1157, also some were excluded after reviewing the abstracts. In addition, an evaluation of the complete contents of the remaining 126 articles was carried out. Subsequently, 21 were excluded for not being released, 105 for not including the necessary terms and 75 for not expressing the results clearly. Finally, the articles included in the review are 30. Table 1 shows the summary of those selected.

FIGURE 1. PRISMA flow chart. Represents the bibliographic search strategy for this systematic review.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Population</th>
<th>Study duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articles on children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Karyana I.P.G., et al., 16</td>
<td>2022</td>
<td>Indonesia</td>
<td>N=52 obese patients.</td>
<td>8 weeks</td>
<td>Group 1: total cholesterol decreased by 22.6 mg/dL, c-LDL decreased by 16.9 mg/dL, TG decreased by 30.8 mg/dL, and c-HDL increased by 1.4 mg/dL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group 1: Treatment with probiotics (Streptococcus thermophi-lus, Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium longum, Bifidobacterium bifidum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and group 2: placebo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Fortes PM, et al., 17</td>
<td>2020</td>
<td>Brazil</td>
<td>N=12 patients with nephrotic syndrome, 2 groups</td>
<td>12 weeks</td>
<td>Group 1: average TC decrease of 41.5 mg/dL and TG decreased by 6.0 mg/dL. Group 2: TC increased (8.0 mg/dL), TG increased 49.5 mg/dL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grupo 1: Lactobacillus plantarum, cepa Lp-G18 2,5 x 10^9 CFU/ capsule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grupo 2: placebo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Authors, et al.,</td>
<td>Year</td>
<td>Country</td>
<td>Participants</td>
<td>Intervention</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>Guardamagna, et al.,</td>
<td>2014</td>
<td>Italy</td>
<td>N=38 children with dyslipidemia (2 groups). Group 1 with placebo, group 2 treatment with probiotics (B. animalis subspecies lactis MB 2409, B. bifidum MB 109B, and B. longum subspecies longum BL04)</td>
<td>12 weeks</td>
</tr>
<tr>
<td>4</td>
<td>AkbariRad M, et al.,</td>
<td>2023</td>
<td>Iran</td>
<td>N=70 prediabetic patients. Group 1: Supplementation with Lactocare probiotics (Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve, Bifidobacterium longum, Streptococcus thermofilos with fructooligosaccharide as a prebiotic) and group 2: Placebo.</td>
<td>12 weeks</td>
</tr>
<tr>
<td>5</td>
<td>Wang S, et al.,</td>
<td>2022</td>
<td>China</td>
<td>N= 365 patients (4 groups) Group 1: probiotics* + Berberine (BBR); group 2: probiotics* + placebo; group 3: BBR + placebo and group 4: placebo + placebo. *Bifidobacterium longum CGMCC No. 2107; Bifidobacterium breve CGMCC No. 6402; Lactococcus gasseri CGMCC No. 10758; Lactobacillus rhamnosus CNMC I-4474; Lactobacillus salivarius CGMCC No. 6403; Lactobacillus crispatus CGMCC No. 6406; Lactobacillus plantarum; CGMCC No. 1258; Lactobacillus fermentum CGMCC No. 6407; and Lactobacillus casei CNMC I-4458.</td>
<td>12 weeks</td>
</tr>
<tr>
<td>6</td>
<td>Guerrero-Bonmatty R, et al.,</td>
<td>2021</td>
<td>Spain</td>
<td>N=39 patients (2 groups). Group 1 with placebo, group 2 intervention with Lactoplantibacillus plantarum strains (CECT7527, CECT7528, and CECT7529) combined with yeast rice extracts.</td>
<td>12 weeks</td>
</tr>
<tr>
<td></td>
<td>Author(s)</td>
<td>Year</td>
<td>Country</td>
<td>Design</td>
<td>Sample Size</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>7</td>
<td>Trotter RE, et al.,¹²</td>
<td>2020</td>
<td>EE.UU.</td>
<td>N= 88 humans (4 groups). Group 1: Placebo + maltodextrin; group 2: Bifidobacterium lactis cepa BLO4; group 3: PreforPro bacteriophages; group 4: Bacillus subtilis strain DE111.</td>
<td>4 weeks</td>
</tr>
<tr>
<td>8</td>
<td>Ruscica, M, et al.,²³</td>
<td>2020</td>
<td>Italy</td>
<td>N= 32 patients Group 1: Nutraceutical combination (probiotic Bifidobacterium longum BB536 and RYR extract), group 2: placebo.</td>
<td>12 weeks</td>
</tr>
<tr>
<td>9</td>
<td>Ahmadian, Fatemeh, et al.,²⁴</td>
<td>2018</td>
<td>Iran</td>
<td>N=60 patients (2 groups). Group 1 with placebo, group 2 intervention with probiotics (Lactobacillus plantarum, L.acidophilus, L.fermentum, L. gasseri)</td>
<td>6 weeks</td>
</tr>
<tr>
<td>10</td>
<td>Costabile, Adele, et al.,²⁵</td>
<td>2017</td>
<td>United Kingdom</td>
<td>N=46 humans, 2 groups Group 1: placebo Group 2: intervention with Lactobacillus plantarum ECGC 13110402 (2x10⁹ CFU)</td>
<td>12 weeks</td>
</tr>
<tr>
<td>11</td>
<td>Fuentes, et al.,²⁶</td>
<td>2016</td>
<td>Spain</td>
<td>N=60 patients (2 groups). Group 1 with placebo, group 2 intervention with Lactobacillus plantarum (LpPRO)</td>
<td>12 weeks</td>
</tr>
<tr>
<td>12</td>
<td>Kullisaar Tiit, et al.,²⁷</td>
<td>2016</td>
<td>Estonia</td>
<td>N= 45 patients. Group 1: consume Reg’Activ Cholesterol capsules, group 2 receive a placebo. Who consumed RAC containing an antioxidant and antiatherogenic probiotic Lactobacillus fermentum ME-3 (LFME-3)</td>
<td>4 weeks</td>
</tr>
<tr>
<td>13</td>
<td>Rajkumar H, et al.,²⁸</td>
<td>2014</td>
<td>India</td>
<td>N= 60 overweight adults (4 groups). Group 1 with placebo, group 2 treatment with probiotic VSL#3 (Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium breve, Lactobacillus acidophilus, Lactobacillus paracasei, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus plantarum, Streptococcus salivarius subsp. thermophilus), group 3 supplemented with Omega 3, group 4 probiotic plus Omega 3.</td>
<td>6 weeks</td>
</tr>
<tr>
<td></td>
<td>Authors, et al.,*</td>
<td>Year</td>
<td>Country</td>
<td>N</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>14</td>
<td>Nabavi S, et al.,29</td>
<td>2014</td>
<td>Iran</td>
<td>N=72 patients diagnosed with nonalcoholic fatty liver disease (NAFLD) in 2 groups. Group 1: conventional yogurt and group 2: probiotic yogurt (Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12)</td>
<td>8 weeks</td>
</tr>
<tr>
<td>15</td>
<td>Fuentes, et al.,30</td>
<td>2013</td>
<td>Spain</td>
<td>N=60 hypercholesterolemic patients (2 groups). Group 1 with placebo, group 2 intervention with Lactobacillus plantarum strains CECT 7527, CECT 7528 and CECT 7529</td>
<td>12 weeks</td>
</tr>
</tbody>
</table>

Articles on rats

<table>
<thead>
<tr>
<th></th>
<th>Authors, et al.,31</th>
<th>Year</th>
<th>Country</th>
<th>N</th>
<th>Description</th>
<th>Duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Zafar Hamza, et al.,</td>
<td>2022</td>
<td>Pakistan</td>
<td>N=55 rats, 11 groups. Group 1: Diet 1. High-Fat Diet (HCFD), Group 2: High-Fat Diet and with Statin Treatment (SDHF), Group 3: Normal Diet, Groups 4-11: HCFD Diet plus probiotics such as: Lactaseibacillus rhamnosus FM9, Limosilactobacillus fermentum Y57, etc.</td>
<td>30 days</td>
<td>Group 2: Decreased total cholesterol level (5%) and c-HDL improved 46%. Groups 4 to 11: Decrease in cholesterol, especially L. rhamnosus FM9 (9%), L. fermentum Y57 (8%) and L. fermentum FM6 (7%), decrease in c-LDL with strains Y57 (41%), FM9 (37%) and FM6 (31%).</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Munir, et al.,32</td>
<td>2022</td>
<td>Pakistan</td>
<td>N=30 rats, 5 groups: Group 1: negative control, group 2: positive control, group 3: HCFD plus L. brevis MT950194, group 4: HCFD plus L. brevis MW365351, group 5: HCFD plus a mixture of the two investigated probiotics.</td>
<td>75 days</td>
<td>The reduction of TC in groups 3 and 4 was 54%, while in group 5 it was 60%, which indicates a better lipid-lowering action when the two strains are combined.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fossi, et al.,33</td>
<td>2022</td>
<td>Cameroon</td>
<td>N= 18 rats, 3 groups: Group 1: feeding with HFCD plus pw4 (L. plantarum), group 2: negative control (oral gavage with deionized water), group 3: HFCD plus deionized water.</td>
<td>4 weeks</td>
<td>In group 1, the levels of TC (17.2%), TG (32.14%), and c-LDL (69.5%) were significantly reduced, the level of HDL-C (75.8%) increased, compared to group 3.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Abdelshafy, A. M., et al.,34</td>
<td>2022</td>
<td>Egypt</td>
<td>N=40 rats. Group 1 (control): Basal diet, group 2: Basal diet with non-fermented quinoa, Group 3: Diet with quinoa fermented by L. plantarum, Group 4: Diet with quinoa fermented by L. delbrueckii subsp. bulgaricus.</td>
<td>30 days</td>
<td>Group 3: reduction of TC (6.48%), c-LDL (43.64%) and TG (17.86%). Increase in c-HDL levels (25.08%). Group 4: reduction of TC (4.58%), c-LDL (39.46%) and TG (12.46%). Increase in HDL-C (19.35%).</td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>Authors</td>
<td>Country</td>
<td>Study Design</td>
<td>Duration</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Asad F., et al.</td>
<td>Pakistan</td>
<td>N=40 hypercholesterolemic rats. Group 1: Hypercholesterolemic diet (HC-CON), group 2: HC diet and supplemented with Agaricus bisporus mushrooms (HC-A. bisporus), group 3: mixture of probiotic (Protexin; Probiotics International Ltd., Somerset, UK) (HC-PB) and group 4: combination of AB and mixture of probiotics (HC-AB.PB).</td>
<td>6 weeks</td>
<td>Group 3: c-HDL levels increased (1.98%). The values of TC (19.41%), c-LDL (5.96%), and TG (34.10%) decreased. Group 4: c-HDL levels increased (7.62%). The values of TC (11.24%), c-LDL (13.92%), and TG (30.25%) decreased.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Wa Y., et al.</td>
<td>China</td>
<td>N=40 rats. Group 1: control (C), group 2: high fat diet (HF) model, group 3: fermented milk diet with a single probiotic (L. rhamnosus LV108) (HFPB) and group 4: diet with a combination fermented milk with probiotic (L. rhamnosus LV108-fermented milk, L. casei grx12-fermented milk and L. fermentum grup grx08-fermented milk) (HFPBS).</td>
<td>4 weeks</td>
<td>Group 3: the lipid profile reduced the TC (27.83%), the c-LDL (57.14%), and the TG (21.53%), in addition, the value of c-HDL increased (4.0%) Group 4: reduced TC (22.71%), decreased c-LDL (35.71%) and there was also a decrease in TG (16.92%). c-HDL levels increased (2.0%) compared to group 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Nocianitri, K.A., et al.</td>
<td>Indonesia</td>
<td>N=24 rats. Group 1: High-fat diet (HF), group 2: HF and L. rhamnosus SKG34 (HF-SKG34), group 3: L. rhamnosus FBB42 (HF-FBB42) and HF and group 4: combination of the two probiotics (L. rhamnosus and L. rhamnosus SKG34 FBB42; HF-SKG34-FBB42).</td>
<td>4 weeks</td>
<td>Compared with group 1, group 2 (HF-SKG34) reduced the levels of TC (13.60%) and c-LDL (71.22%), in addition, there was an increase in c-HDL (15.29%). Group 3 (HF-FBB42) reduced the concentrations of TC (16.22%), c-LDL (66.01%), and GT (20.76%). The levels rose c-LDL (8.71%). Group 4: decrease in TC values (13.32%), c-LDL (72.18%), and TG (17%). The amount of HDL-C increased by 15.23%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Chuan, Li, et al.</td>
<td>China</td>
<td>N= 40 rats, 4 treatment groups: Group 1: normal diet. Group 2: HFCD fed, Group 3: HFCD + Lactobacillus plantarum NCU116L (10⁸ CFU/ml), Group 4: HFCD + Lactobacillus plantarum NCU116H (10⁹ CFU/ml).</td>
<td>5 weeks</td>
<td>The results suggest that L. plantarum NCU116 was able to modify lipid metabolism and reduce cholesterol level, in particular, in HFCD rats through regulation of gene expression of key factors related to LDL receptor and CYP7A1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Authors and Year</td>
<td>Year</td>
<td>Country</td>
<td>Study Design</td>
<td>Duration</td>
<td>Findings</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>------</td>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Park Do-Young, et al., 2013</td>
<td>Republic of Korea</td>
<td>N=27 rats, 3 groups. Group 1: High-Fat Diet (HDF) + placebo, group 2: Normal diet, group 3: HDF + probiotic (Lactobacillus curvatus HY7601 y Lactobacillus plantarum KY1032)</td>
<td>10 weeks</td>
<td>Group 3: Total cholesterol decreased (17%) compared to group 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Salaj, et al., 2013</td>
<td>Slovakia</td>
<td>N= 40 rats, 4 groups: Group 1: control, group 2: HFCD, group 3: HFCD plus Lactobacillus plantarum LS/07, group 4: HFCD plus supplementation with Lactobacillus plantarum Biocenol LP96</td>
<td>10 weeks</td>
<td>The administration of Lactobacillus plantarum LS/07 resulted in greater decreases in TC (20%) and c-LDL (24%), while TG and VLDL levels were reduced by 39% in the group with Lactobacillus plantarum Biocenol LP96.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Mohania, Dheeraj, et al., 2013</td>
<td>India</td>
<td>N=21 Rats on a hypercholesterolemic diet. 3 groups. Group 1 with Dahi probiotic (Lactobacillus plantarum Lp9), group 2: Dahi probiotic in milk, group 3: buffalo milk</td>
<td>120 days</td>
<td>Group 1: reduction in total cholesterol (35%) and triglycerides (72%), increase in c-HDL (116%), and decrease in LDL-VLDL (59%). Group 2 and 3: increased total cholesterol and triglycerides.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Yoo SR, et al., 2013</td>
<td>Republic of Korea</td>
<td>N=50 rats, 5 groups Group 1: (HFCD), Group 2: HFCD + L. plantarum (PL) KY1032 (PL, 10^{10} CFU/dia), Group 3: HFCD + L. curvatus (LC) HY7601 (CU, 10^{10} CFU/dia), Group 4: HFCD + (PL y CL), Group 5: Normal diet.</td>
<td>9 weeks</td>
<td>Group 2, 3 and 4: They reduced the accumulation of fat and total cholesterol in plasma. Group 4: Decreased enzymatic activities related to the oxidation of fatty acids and their gene expressions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Kumar Manoj, et al., 2013</td>
<td>India</td>
<td>N=35 rats, divided into 5 treatment groups. Group 1: Normal Control Diet, Group 2: Hypercholesterolemic (HD) Diet, Group 3: HD Diet + Lactobacillus rhamnosus GG (LGG), Group 4: HD Diet + Aloe Vera Gel, and Group 5: HD Diet + LGG Probiotic + Aloe Vera Gel.</td>
<td>45 days</td>
<td>Group 3: decrease in total cholesterol (32%) and triglycerides (41%), group 4: reduction in total cholesterol (43%), and triglycerides (23%), and group 5: decrease in triglycerides (45%) and atherogenic index at 2.45. VLDL (45%) and c-LDL (30%).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Huang, Ying, et al., 2013</td>
<td>China</td>
<td>N=40 rats, 3 treatment groups: Group 1: High cholesterol diet (HC), Group 2: HC diet + Lactobacillus plantarum Lp09 (HC-Lp09) and Group 3: HC diet + Lactobacillus plantarum Lp45 (HC-Lp45).</td>
<td>4 weeks</td>
<td>Group 2: reduced TC= 30.5%, TG= decrease 23.7%, c-LDL: 47.9% reduction Group 3: reduced TC =18.4%, TG= 12.3% reduction, c-LDL = 21.5% reduction.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The selected bibliography indicates that the investigations of probiotic supplementation have beneficial effects in the reduction of hyperlipidemia, decreasing the level of total cholesterol by 16.65%, the decrease in the concentration of c-LDL by 32.02%. In addition, an increase of 21.71% of the c-HDL level was demonstrated in the study subjects, with respect to the concentrations of triglycerides, a 29.67% decrease is reported in some articles. The trials using probiotics were carried out from 3 to 12 weeks, concluding the minimum period of consumption in which probiotics manifest their benefits which is after 6 weeks. The probiotics that were used are *Lactobacillus plantarum*, *Lactobacillus rhamnosus*, *Lacticaseibacillus rhamnosus*, *Limosilactobacillus fermentum*, *Lactobacillus curvatus*, *Lactobacillus acidophilus*, *Lactobacillus salivarius*, *Lactobacillus crispatus*, *Lactobacillus casei*, *Lactobacillus paracasei*, *Lactobacillus delbrueckii subsp. bulgaricus*, *Streptococcus salivarius subsp. thermophilus*, *Bifidobacterium longum*, *Bifidobacterium breve*, *Bifidobacterium lactis*, *Bifidobacterium infantis*, *Bacillus subtilis* and *Lactobacillus gasseri*.

Instruments used to measure

The database software used in the articles selected for the systematic review were MINITAB for Windows 11 and nine were registered in SPSS (Statistical Package for Social Sciences). Subsequently, the statistical tests for comparison between the groups in each particular study were: Tukey’s test, Duncan’s method, ANOVA, Friedman, MANCOVA, Chi-square, similarity analysis (ANOSIM), unpaired and unpaired Student’s T test, U Mann-Whitney and Newman-Keuls multiple comparisons test. In addition, the Kolmogorov–Smirnov test was used for the distribution of data in one article, and the Bonferroni post-hoc test was used to determine the simultaneous confidence level for a set of intervals.

Study characteristics

The date range of the articles was from 2013 to 2023. The investigations were carried out: two from Indonesia, one from Brazil, two from Italy, four from China, three from Spain, one from EE.UU., three from Iran, one from Egypt, one from the United Kingdom, one from Estonia, three from India, three from Pakistan, one from Cameroon, two from the Republic of Korea, one from Slovakia and one from South Korea.

Population studied

The tested population consisted of fifteen human investigations, between women and men, (total N=1099, n=102 children and n=997 adults) and in fifteen investigations they included rats (total N=536).

Record appraisal

The objectives set out in the investigations were clear, they had study designs in accordance with the purposes they sought. Fifteen investigations involved humans, and 15 rats. The variables were considered and measured according to each investigation correctly, as well as the risk factors considered with respect to the stated objectives. The effects of the probiotics in the reduction of the lipid profile were evaluated with conventional methods and in the period between 30 days and 12 weeks. The following table 2 and 3 presents the summary of the variables of the selected articles.
TABLE 2. Record appraisal

<table>
<thead>
<tr>
<th>Authors</th>
<th>Aims/Clear objectives</th>
<th>Study design appropriate for the stated aim(s)</th>
<th>Sample size justified</th>
<th>Target population defined</th>
<th>Sample appropriate to represent the target population</th>
<th>Selection process of participants likely to represent the target population</th>
<th>Measures undertaken to address non-responders</th>
<th>Risk factors and outcome variable measure appropriately to the aims</th>
<th>Clear statistical significance defined</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Karyana I.P.G., et al., (2022)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>2 Fortes PM, et al., (2020)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>3 Guardamagna, et al., (2014)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>4 AkbariRad M, et al., (2023)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>5 Wang S, et al., (2022)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>7 Trotter RE, et al., (2020)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>8 Ruscica, M, et al., (2019)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>10 Costable, Adele, et al., (2017)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>11 Fuentes, et al., (2016)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>12 Kullisaar Tiiu, et al., (2016)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>13 Rajkumar H, et al., (2014)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>14 Nabavi S, et al., (2014)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>15 Fuentes, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>16 Zafar Hamza, et al., (2022)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>17 Munir, et al., (2022)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>18 Fossi, et al., (2022)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>#</td>
<td>Authors and Year</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>No/Yes</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>19</td>
<td>Abdelshafy, A. M., et al., (2022)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>20</td>
<td>Asad F., et al., (2020)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>23</td>
<td>Chuan, et al., (2014)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>24</td>
<td>Park Do-Young, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>25</td>
<td>Salaj, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>26</td>
<td>Mohania, Dheeraj, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>27</td>
<td>Yoo SR, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>28</td>
<td>Kumar Manoj, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>29</td>
<td>Huang, Ying, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>30</td>
<td>Park Do-Young, et al., (2013)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

TABLE 3. Continuation of record appraisal

<table>
<thead>
<tr>
<th>Methods described sufficiently to be repeated</th>
<th>Basic data described</th>
<th>Response rate described</th>
<th>If appropriate, information about non responders described</th>
<th>Results internally consistent</th>
<th>Presence of results for the analyses described</th>
<th>Discussion and conclusions justified</th>
<th>Limitations discussed</th>
<th>Funding or conflict of interests that could affect results</th>
<th>Ethical approval or informed consent attained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>7</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>11</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>12</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>13</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>14</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>15</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>16</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>17</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>18</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>19</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>20</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>21</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>22</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>23</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>24</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>25</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>26</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>27</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>28</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>
DISCUSSION

Various investigations indicate that the intestinal microbiota can intervene in multiple mechanisms such as, the production of specific substances peptides, vitamins, fatty acids, etc., help the intestinal barrier, influence the endocrine, nervous, immune systems and metabolism lipids, among other functions.66,47 Cardiovascular diseases are increasing, and conventional treatments to treat them include drugs and diet, but there is currently evidence that some probiotic strains can improve the lipid profile and hypercholesterolemia. The use of probiotic supplements is a topic that has currently gained more interest in the general population, due to the search for new therapies and treatments for various pathologies.

Cholesterol reduction from probiotics happens through some mechanisms such as interference of cholesterol bioavailability in the small intestine, producing short-chain fatty acids through colonic fermentation of indigestible carbohydrates, and deconjugating bile salt hydrolase production. Bile acids, which is the best-known mechanism for performing the lipid-lowering effect.10 Among the scientific community, multiple investigations have also been carried out to find out more benefits of probiotic bacteria to help in the problem of hyperlipidemia that can cause more severe problems such as, cardiovascular events, Hendijani F, et al. (2018), conducted a systematic review and meta-analysis of 641 randomized controlled trials where they conclude that for the control of dyslipidemia and hypertension in type 2 diabetic patients the use of probiotics reduces systolic blood pressure (SBP) and diastolic blood pressure (DBP), TC, c-LDL, c-HDL and TG.48 This same effect was evaluated in a meta-analysis of 14 randomized placebo-controlled trials in 702 participants demonstrating that probiotics in fermented milk generate a reduction of 3,10 mmHg (95% CI: 24,64; 21,56) in systolic BP and 1,09 mmHg (95% CI 22,11; 20,06) in diastolic BP in prehypertensive and hypertensive subjects.49 Some research that talks about the benefits of probiotics in relation to the effect on lipid metabolism is the case of a meta-analysis of 32 controlled trials with 1971 patients that concludes that probiotic supplements can produce a reduction in total cholesterol. It is recognized that a longer consumption use in the form of capsules can increase the curative effect.50

In the present review, it was found that various probiotics such as Lactobacillus plantarum, L. acidophilus, L. fermentum, L. gasseri, L. curvatus, L. rhamnosus, among others can help reduce TC and c-LDL levels, in turn raise the level of c-HDL. This also, in accordance with what was mentioned by the research of Hu YM, et al., that probiotics are a biotherapeutic potential that improve lipid metabolism.51 Or in the case of the findings of Sharma S, et al. (2016), it is concluded that the serum levels of total cholesterol and c-LDL are significantly reduced, which helps in the risk of cardiovascular diseases.52

This review found that the consumption of probiotic supplements helps reduce total cholesterol by 16.65% and c-LDL by 32.02%. In addition, they raise the concentration of c-HDL by 21,71%, and reduce the concentration of TG (29,67%), this agrees with Shimizu M, et al., (2015), in the meta-analysis of 11 randomized clinical trials in patients with normal hypercholesterolemia or mild, probiotic supplementation which demonstrate reduction in total cholesterol (TC) (mean difference -0.17 mmol/L, 95% CI -0.27 to -0.07 mmol/L) and c-LDL. (Mean difference -0.22 mmol/L, 95% CI -0.30 to -0.13 mmol/L).53

Strengths

This systematic review is so far the only one that focuses specifically on the percentage of modification exerted by probiotics on the lipid profile. In addition, it is a current investigation, which contemplates some variables such as the reduction of total cholesterol, c-LDL and the increase in c-HDL, which is important for cardiovascular health.

Limitations

We found some limitations in this research, some articles are not freely available, others do not mention the results.
clearly or with the values expressed as a percentage, in the case of the effect of probiotics on the level of triglycerides, very few researchers mention the result. Different investigations were outside the searched time period.

CONCLUSIONS

Supplementation with specific strains of probiotics has a lipid-lowering effect, it especially reduces hypercholesterolemia through various mechanisms, but more studies are required to determine the dosage and treatment time. This review reveals that a larger number of experiments in humans and with supplementation over a longer time range are needed to verify the effects of probiotics specifically in relation to lipid profile.

CONFLICTS OF INTEREST

The authors declare no conflict of interests.

FUNDING

No funding was received for the conduct of this review.

REFERENCES

12. Tzab HLA, Macswiney GMC. Roedores ¿Plagas indeseables o animales útiles? Biodiversitas. CONABIO.
Martínez Colón, A. et al. *Effect of treatment with probiotics in the reduction of altered...*

8. Rajkumar H, Mahmood N, Kumar M, Varikuti SR, Chalal HR, Miyakala SP. Effect of probiotic (VSL#3) and ome-
35. Asad F, Anwar H, Yassine HM, Ullah MI, Rahman A, Kamran Z, Sohail MU. White Button Mushroom, Agaricus bisporus (Agaricomycetes), and a Probiotics Mixture Supplementation Correct Dyslipidemia without Influencing the Colon Microbiome Profile in Hypercholesterolemic Rats. Int J Med Mushrooms. 2020;22(3):235-244. Available at: https://www.dl.begellhouse.com/journals/708ae68d64b17c52,3f1ff42710c84eff,750bfc-123b32c8f8.html

