Embryonic models with stem cells: a pending ethical-legal reflection

Main Article Content

Marta Reguera Cabezas
https://orcid.org/0000-0003-2252-7199

Abstract




In recent years, the development of in vitro models with human stem cells that simulate early embryonic development has experienced great progress. Difficulties in accessing human embryos, the scarcity of embryonic material and the technical, legal and ethical challenges to research and experimentation with human embryos in vitro continue to be a barrier to progress in the knowledge of embryogenesis after gastrulation.


The aim of the present research work is to introduce the state of the question and to analyze the ethical-legal situation that regulates these models of development. Briefly exposing the situation in Spanish territory.


The research methodology was based on the analysis of scientific publications, legal norms and ethical principles. The main conclusion drawn is that the limits of embryoid research have not been described and are likely to become indispensable as research advances towards models with the potential to be transferred and gestated in utero.




Downloads

Download data is not yet available.

PLUMX Metrics

Article Details

How to Cite
Reguera Cabezas, M. (2025). Embryonic models with stem cells: a pending ethical-legal reflection. Medicina Y Ética, 36(1), 78–131. https://doi.org/10.36105/mye.2025v36n1.03
Section
Articles
Author Biography

Marta Reguera Cabezas, Hospital Universitario Marqués de Valdecilla, Cantabria, Spain

CAE. Hospital Universitario Marqués de Valdecilla, Cantabria, Spain.

References

Stern CD. Reflections on the past, present and future of developmental biology. Dev Biol. 2022; 488:30-4. https://doi.org/10.1016/j.ydbio.2022.05.001

Ghimire S, Mantziou V, Moris N, Martinez Arias A. Human gastrulation: The embryo and its models. Dev Biol. 2021; 474:100-8. https://doi.org/10.1016/j.yd-bio.2021.01.006

Pereira Daoud AM, Popovic M, Dondorp WJ, Trani Bustos M, Bredenoord AL, Chuva de Sousa Lopes SM. Modelling human embryogenesis: embryo-like structures spark ethical and policy debate. Hum Reprod Update. 2020; 26(6):779-98. https://doi.org/10.1093/humupd/dmaa027

Hyun I, Munsie M, Pera MF, Rivron NC, Rossant J. Toward Guidelines for Re- search on Human Embryo Models Formed from Stem Cells. Stem Cell Rep. 2020; 14(2):169-74. https://doi.org/10.1016/j.stemcr.2019.12.008

Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol. 2022; 10:838356. https://doi.org/10.3389/fcell.2022.838356

Chen Y, Shao Y. Stem Cell-Based Embryo Models: En Route to a Programmable Future. J Mol Biol. 2022; 434(3):167353. https://doi.org/10.1016/j.jmb.2021.167353

Rossant J, Tam PPL. Opportunities and challenges with stem cell-based embryo models. Stem Cell Rep. 2021; 16(5):1031-8. https://doi.org/10.1016/j.stemcr.2021.02.002

Corujo-Simon E, Radley AH, Nichols J. Evidence implicating sequential commitment of the founder lineages in the human blastocyst by order of hypoblast gene activation. Development. 2023; 150(10):dev201522. https://doi.org/10.1242/dev.201522

Rivron NC, Martinez Arias A, Pera MF, Moris N, M’hamdi HI. An ethical framework for human embryology with embryo models. Cell. 2023; 186(17):3548-57. https://doi.org/10.1016/j.cell.2023.07.028

De Miguel Beriain I. What is a human embryo? A new piece in the bioethics puzzle. Croat Med J. 2014; 55(6):669-71. https://doi.org/10.3325/cmj.2014.55.669

Ball P. What is an embryo? Scientists say definition needs to change. Nature. 2023; 620(7976):928-9. https://doi.org/10.1038/d41586-023-02641-2

Steptoe PC, Edwards RG, Purdy JM. Human blastocysts grown in culture. Nature. 1971; 229(5280):132-3. https://doi.org/10.1038/229132a0

Wamaitha SE, Niakan KK. Human Pre-gastrulation Development. Curr Top Dev Biol. 2018; 128:295-338. https://doi.org/10.1016/bs.ctdb.2017.11.004

Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, et al. Self-organisation of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016; 18(6):700-8. https://doi.org/10.1038/ncb3347

Braude P, Bolton V, Moore S. Human gene expression first occurs between the four and eight cell stages of preimplantation development. Nature. 1988; 332(6163):459-61. https://doi.org/10.1038/332459a0

Molè MA, Weberling A, Zernicka-Goetz M. Comparative analysis of human and mouse development: From zygote to pregastrulation. Curr Top Dev Biol. 2020; 136:113-38. https://doi.org/10.1016/bs.ctdb.2019.10.002

Meistermann D, Bruneau A, Loubersac S, Reignier A, Firmin J, François-Campion V, et al. Integrated pseudotime analysis of human pre-implantation embryo single cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell. 2021; 28(9):1625-1640.e6. https://doi.org/10.1016/j.stem.2021.04.027

Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol. 2021; 474:91-9. https://doi.org/10.1016/j.ydbio.2020.12.010

Müller F, O’Rahilly R. The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs. 2004; 177(1):2-20. https://doi.org/10.1159/000078423

Amadei G, Handford CE, Qiu C, De Jonghe J, Greenfeld H, Tran M. Embryo model completes gastrulation to neurulation and organogenesis. Nature. 2022; 610(7930):143-53. https://doi.org/10.1038/s41586-022-05246-3

Sozen B, Conkar D, Veenvliet JV. Carnegie in 4D? Stem-cell-based models of human embryo development. Semin Cell Dev Biol. 2022; 131:44-57. https://doi.org/10.1016/j.semcdb.2022.05.023

Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. Self-organization of the in vitro attached human embryo. Nature. 2016; 533(7602):251-4. https://doi.org/10.1038/nature17948

Rivron N, Pera M, Rossant J, Martinez Arias A, Zernicka-Goetz M, Fu J. Debate ethics of embryo models from stem cells. Nature. 2018; 564(7735):183-5. https://doi.org/10.1038/d41586-018-07663-9

Moris N, Alev C, Pera M, Martinez Arias A. Biomedical and societal impacts of in vitro embryo models of mammalian development. Stem Cell Rep. 2021; 16(5):1021-30. https://doi.org/10.1016/j.stemcr.2021.03.023

O’Rahilly R, Müller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs. 2010; 192(2):73-84. https://doi.org/10.1159/000289817

Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Dev Camb Engl. 2004; 131(22):5515-25. https://doi.org/10.1242/dev.01451

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4):663-76. Disponible en: https://www.cell.com/fulltext/S0092-8674(06)00976-7

Pullicino P, Richard EJ, Burke WJ. Mass Production of Human Embryoid Cells from Developmentally Frozen Embryos: Is It Ethical? Linacre Q. 2020; 87(3):347- 50. https://doi.org/10.1177/0024363920926013

Fu J, Warmflash A, Lutolf MP. Stem-cell-based embryo models for fundamental research and translation. Nat Mater. 2021; 20(2):132-44. https://doi.org/10.1038/s41563-020-00829-9

Shahbazi MN, Siggia ED, Zernicka-Goetz M. Self-organization of stem cells into embryos: A window on early mammalian development. Science. 2019; 364(6444):948-51. https://doi.org/10.1126/science.aax0164

Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M. Human blastoids model blastocyst development and implantation. Nature. 2022; 601(7894):600-5. https://doi.org/10.1038/s41586-021-04267-8

Matthews KRW, Wagner DS, Warmflash A. Stem cell-based models of embryos: The need for improved naming conventions. Stem Cell Rep. 2021; 16(5):1014-20.

Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods.

; 11(8):847-54. https://doi.org/10.1016/j.stemcr.2021.02.018

Aach J, Lunshof J, Iyer E, Church GM. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife. 2017; 6:e20674. https://doi.org/10.7554/eLife.20674

Warmflash A. Synthetic Embryos: Windows into Mammalian Development. Cell Stem Cell. 2017; 20(5):581-2. https://doi.org/10.1016/j.stem.2017.04.001

Oldak B, Wildschutz E, Bondarenko V, Comar M Y, Zhao C, Aguilera-Castrejon A, et al. Complete human day 14 post-implantation embryo models from naive ES cells. Nature. 2023; 622(7983):562-73. https://doi.org/10.1038/s41586-023-06604-5

Turner DA, Girgin M, Alonso-Crisostomo L, Trivedi V, Baillie-Johnson P, Glodowski CR, et al. Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Dev Camb Engl. 2017; 144(21):3894-906. https://doi.org/10.1242/dev.150391

van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis AK, Nowotschin S, Turner DA, et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Dev Camb Engl. 2014; 141(22):4231-42. https://doi.org/10.1242/dev.113001

Simunovic M, Brivanlou AH. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Dev Camb Engl. 2017; 144(6):976-85. https://doi.org/10.1242/dev.143529

Zeevaert K, Elsafi Mabrouk MH, Wagner W, Goetzke R. Cell Mechanics in Embryoid Bodies. Cells. 2020; 9(10):2270. https://doi.org/10.3390/cells9102270

Veenvliet JV, Bolondi A, Kretzmer H, Haut L, Scholze-Wittler M, Schifferl D, et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science. 2020; 370(6522):eaba4937. https://doi.org/10.1101/2020.03.04.974949

Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN, Li Z, et al. Controlled modelling of human epiblast and amnion development using stem cells. Nature. 2019; 573(7774):421-5. https://doi.org/10.1038/s41586-019-1535-2

Wang X, Hu G. Human embryos in a dish – modeling early embryonic development with pluripotent stem cells. Cell Regen. 2022; 11:4. https://doi.org./10.1186/s13619-022-00107-w

Cornwall-Scoones J, Zernicka-Goetz M. Unifying synthetic embryology. Dev Biol. 2021; 474:1-4. https://doi.org/10.1016/j.ydbio.2021.03.007

Sozen B, Amadei G, Cox A, Wang R, Na E, Czukiewska S, et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol. 2018; 20(8):979-89. https://doi.org/10.1038/s41556-018-0147-7

Moris N, Anlas K, van den Brink SC, Alemany A, Schröder J, Ghimire S, et al. An in vitro model of early anteroposterior organization during human development. Nature. 2020; 582(7812):410-5. https://doi.org/10.1038/s41586-020-2383-9

Baillie-Benson P, Moris N, Martinez Arias A. Pluripotent stem cell models of early mammalian development. Curr Opin Cell Biol. 2020; 66:89-96. https://doi.org/10.1016/j.ceb.2020.05.010

Bayerl J, Ayyash M, Shani T, Manor YS, Gafni O, Massarwa R. Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell. 2021; 28(9):1549-1565.e12. https://doi.org/10.1016/j.stem.2021.04.001

Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci. 2023; 24(17):13655. https://doi.org/10.3390/ijms241713655

Wilson D. Creating the ethics industry: Mary Warnock, in vitro fertilization and the history of bioethics in Britain. BioSocieties. 2011; 6(2):121-41. https://doi.org/10.1057/biosoc.2010.26

Cavaliere G. A 14-day limit for bioethics: the debate over human embryo research. BMC Med Ethics. 2017; 18(1):38. https://doi.org/10.1186/s12910-017-0198-5

Pera MF. Human embryo research and the 14-day rule. Dev Camb Engl. 2017;

(11):1923-5. https://doi.org/10.1242/dev.151191

McLaren. Where to draw the line. P Roy Inst [Internet]. 1984 [citado 9 de abril de 2023]. Disponible en: https://scholar.google.com/scholar_lookup?journal=P+Ro-y+Inst&title=Where+to+draw+the+line&author=A+McLaren&volume=56&publication_year=1984&pages=101-121&

Hengstschläger M, Rosner M. Embryoid research calls for reassessment of legal regulations. Stem Cell Res Ther. 2021; 12(1):356. https://doi.org/10.1186/s13287-021-02442-2

Matthews KR, Moralí D. National human embryo and embryoid research policies: a survey of 22 top research-intensive countries. Regen Med. 2020; 15(7):1905- 17. https://doi.org/10.2217/rme-2019-0138

Fabbri M, Ginoza M, Assen L, Jongsma K, Isasi R. Modeling policy development: examining national governance of stem cell-based embryo models. Regen Med. 2023; 18(2):155-68. https://doi.org/10.2217/rme-2022-0136

Rossant J, Fu J. Why researchers should use human embryo models with caution. Nature. 2023; 622(7983):454-6. https://doi.org/10.1038/d41586-023-03062-x

Pera MF, de Wert G, Dondorp W, Lovell-Badge R, Mummery CL, Munsie M, et al. What if stem cells turn into embryos in a dish? Nat Methods. 2015; 12(10):917-9. https://doi.org/10.1038/nmeth.3586

Nicolas P, Etoc F, Brivanlou AH. The ethics of human-embryoids model: a call for consistency. J Mol Med Berl Ger. 2021; 99(4):569-79. https://doi.org/10.1007/s00109-021-02053-7

Cortina A. Las fronteras de la persona: el valor de los animales, la dignidad de los humanos. Madrid: TAURUS; 2009.

De Lora P. Justicia para los animales La ética más allá de la humanidad. Madrid: Alianza Editorial; 2003.

Singer, Casal. Los derechos de los simios. Editorial Trotta; 2022.

Singer P. Liberación animal El clásico definitivo del movimiento animalista. Taurus; 2018. 3

Sawai T, Akatsuka K, Okui G, Minakawa T. The regulation of human blastoid research: A bioethical discussion of the limits of regulation. EMBO Rep. 2022; 23 (10): e56045. https://doi.org/10.15252/embr.202256045

Lovell-Badge R. Stem-cell guidelines: why it was time for an update. Nature. 2021; 593(7860):479-479. https://doi.org/10.1038/d41586-021-01387-z

ISSCR. Guidelines for Stem Cell Research and Clinical Translation [Internet]. ISS- CR; 2021 [citado 9 de abril de 2023]. Disponible en: https://www.isscr.org/guidelines

Clark AT, Brivanlou A, Fu J, Kato K, Mathews D, Niakan KK. Human embryo research, stem cell-derived embryo models and in vitro gametogenesis: Considerations leading to the revised ISSCR guidelines. Stem Cell Rep. 2021; 16(6):1416-24. https://doi.org/10.1016/j.stemcr.2021.05.008

Savulescu J, Pugh J, Douglas T, Gyngell C. The moral imperative to continue gene editing research on human embryos. Protein Cell. 2015; 6(7):476-9. https://doi.org/10.1007/s13238-015-0184-y

Harris J. It’s time to extend the 14-day limit for embryo research. The Guardian [Internet]. 2016 [citado 1 de abril de 2023]; Disponible en: https://www.theguardian.com/commentisfree/2016/may/06/extend-14-day-limit-embryo-research

Carbonell M, editor. El principio de proporcionalidad y la interpretación constitucional. [Internet]. V&M Gráficas. Quito; 2008. (Justicia y Derechos Humanos.). Disponible en: https://biblioteca.corteidh.or.cr/tablas/25613.pdf

Martínez M de la L C. El principio de proporcionalidad terapéutica. Cir Plast [Internet]. [citado 7 de julio de 2023]; Disponible en: https://www.academia.edu/22304328/EL_PRINCIPIO_DE_PROPORCIONALIDAD_TERAP%C3%89UTICA

Pennings G, Van Steirteghem A. The subsidiarity principle in the context of embryonic stem cell research. Hum Reprod Oxf Engl. 2004; 19(5):1060-4. https://doi.org/10.1093/humrep/deh142

Sandel MJ. Embryo ethics--the moral logic of stem-cell research. N Engl J Med. 2004; 351(3):207-9. https://doi.org/10.1093/humrep/deh142

Freeman JS. Arguing along the slippery slope of human embryo research. J Med Philos. 1996; 21(1):61-81. https://doi.org/10.1093/jmp/21.1.61

Munthe C. The Price of Precaution and the Ethics of Risk. Springer Science & Business Media; 2011.

Denker HW. Embryonale Stammzellforschung: Aufklärung notwendig. Problematik der informierten Zustimmung der Spender. Dtsch Ärztebl. 2005; 102:A892-3. Disponible en: https://www.aerzteblatt.de/archiv/46117/Embryonale-Stammzell-forschung-Aufklaerung-notwendig

Denker HW. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications. Cells. 2021; 10(6):1461. https://doi.org/10.3390/cells10061461

Mollaki V. Ethical Challenges in Organoid Use. BioTech. 2021; 10(3):12. https://doi.org/10.3390/biotech10030012

Yui H, Muto K, Yashiro Y, Watanabe S, Kiya Y, Kamisato A, et al. Comparison of the 2021 International Society for Stem Cell Research (ISSCR) guidelines for «laboratory-based human stem cell research, embryo research, and related research activities» and the corresponding Japanese regulations. Regen Ther. 2022; 21:46- 51. https://doi.org/10.1016/j.reth.2022.05.002

NHMRC Embryo Research Licensing Committee. NHMRC statement on i Blastoids [Internet]. Australia: NHMRC; 2021 [citado 11 de abril de 2023]. 2021. Disponible en: https://www.nhmrc.gov.au/about-us/news-centre/nhmrc-statement-iblastoids

De Miguel B. Intervenciones en gametos, embriones o fetos. Manual de Bioderecho [Internet]. Madrid: Dykinson. 2022; 1-1080. Disponible en: https://www.dykinson.com/

Jefatura del Estado. Ley 14/2006, de 26 de mayo, sobre técnicas de reproducción humana asistida [Internet]. Sec. 1, Ley 14/2006 may 27. 2006; 19947-56. Disponible en: https://www.boe.es/eli/es/l/2006/05/26/14

Jefatura del Estado. Real Decreto-ley 9/2014, de 4 de julio, por el que se establecen las normas de calidad y seguridad para la donación, la obtención, la evaluación, el procesamiento, la preservación, el almacenamiento y la distribución de células y tejidos humanos y se aprueban las normas de coordinación y funcionamiento para su uso en humanos [Internet]. Sec. 1, Real Decreto-ley 9/2014. 2014; 52716-63. Disponible en: https://www.boe.es/eli/es/rdl/2014/07/04/9

Romeo Casabona. Ley de Investigación Biomédica: un nuevo y completo mapa para la investigación científica en biomedicina. Med Clínica. 2009; 132(16):633-7.

BOE-A-2006-9292 Ley 14/2006, de 26 de mayo, sobre técnicas de reproducción humana asistida. [Internet]. 2006. Disponible en: https://boe.es/buscar/act.php?i-d=BOE-A-2006-9292

Jefatura del Estado. Ley 14/2007, de 3 de julio, de Investigación biomédica [Inter- net]. Sec. 1, Ley 14/2007. 2007; 28826-48. Disponible en: https://www.boe.es/eli/ es/l/2007/07/03/14

El embrioide y sus leyes. Una breve aproximación al contexto internacional | Revista de Bioética y Derecho. 2023 [citado 27 de enero de 2024]. Disponible en: https://revistes.ub.edu/index.php/RBD/article/view/42742

Ministerio de Sanidad y Consumo. Real Decreto 2132/2004, de 29 de octubre, por el que se establecen los requisitos y procedimientos para solicitar el desarrollo de proyectos de investigación con células troncales obtenidas de preembriones sobrantes [Internet]. Sec. 1, Real Decreto 2132/2004. 2004; 35905-7. Disponible en: https://www.boe.es/eli/es/rd/2004/10/29/2132