Biases in AI? An analysis of algorithmic bias and a proposed solution
Main Article Content
Abstract
Since its inception as a series of algorithms used to obtain information immediately and rationally, Artificial Intelligence (AI) has raised considerable dilemmas regarding what and how programming is designed, especially because those behind the process can, and in fact do, transfer their own biases to programming based on their human perspective. This transfer process is called algorithmic bias, which will be discussed in this article. We will analyze its impacts and how we could mitigate or even eliminate them. In this sense, it is proposed that interdisciplinary teams, with transparent designs that take ethical and bioethical considerations into account, mitigate biases, thus promoting human dignity and social justice.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Medicina y Ética is distributed under a Creative Commons License Atribución-NoComercial-CompartirIgual 4.0 Internacional.
The author keeps the property rights with no restriction whatsoever and guarantees the magazine the right to be the first publication of the work. The author is free to deposit the published version in any other medium, such as an institutional archive or on his own website.
How to Cite
References
1. Mateescu A, Elish M. AI in Context: The Labor of Integrating New Technologies. Chicago: Data & Society Research Institute; 2015.
2. Meissner P, Narita Y. Así es como la inteligencia artificial transformará la toma de decisiones. Tecnologías emergentes -WEF; 2023. Disponible en: https://es.weforum.org/agenda/2023/10/la-inteligencia-artificial-transformara-la-toma-de-decisiones-asi-es-como/
3. Lanzagorta-Ortega D, Carrillo-Pérez DL, Carrillo-Esper R. Inteligencia artificial en medicina: presente y futuro. Gac Med Méx. 2021; 158(1):17-21. Disponible en: https://doi.org/10.24875/gmm.m22000688
4. Chui M, Manyika J, Miremadi M. Where machines could replace humans and where they can’t (yet). McKinsey Quarterly. 2019:1-12. Disponible en: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet
5. Ferrante E. Inteligencia artificial y sesgos algorítmicos. Nueva Sociedad. 2021; (294):27-36. Disponible en: https://nuso.org/articulo/inteligencia-artificial-y-sesgos-algoritmicos/
6. Simon J, Wong PH, Rieder G. El sesgo algorítmico y el enfoque del diseño sensible al valor. Rev. Latinoam. Econ. Soc. Digit. 2022; (Número Especial 1):1-18. Disponible en: https://doi.org/10.53857/tzvn9229
7. Barocas S, Hardt M, Narayanan A. Fairness and Machine Learning: Limitations and Opportunities. 2019. Disponible en: fairmlbook.org
8. Asís RD. Una mirada a la robótica desde los derechos humanos. Dykinson; 2014.
9. Terrones AL. Inteligencia Artificial fiable y vulnerabilidad: una mirada ética sobre los sesgos algorítmicos. En Suárez-Álvarez R, Martín-Cárdaba MÁ, Fernández-Martínez LM. Vulnerabilidad digital: desafíos y amenazas de la Socieda hiperconectada. Madrid: Dykinson; 2023.
10. Diakopoulos N. Accountability in Algorithmic Decision Making. Commun ACM. 2016; 59(2):56-62. Disponible en: https://doi.org/10.1145/2844110
11. Velázquez H. Transhumanismo, libertad e identidad humana. Thémata. 2009; (41):577-590. Disponible en: https://revistascientificas.us.es/index.php/themata/article/view/594
12. Olarte C, Plegrín J, Reinares E. Implantes para aumentar las capacidades innatas: integrados vs apocalípticos. ¿Existe un nuevo mercado? Universia Bus Rev. 2015:86-101. Disponible en: https://www.redalyc.org/articulo.oa?id=43343050003
13. Abràmoff M, Tarver M, Loyo-Berrios N, Trujillo S, Char D, Obermeyer Z, Maisel, W. Considerations for addressing bias in artificial intelligence for health equity.npj Digital Med. 2013; 6(170):1-7. Disponible en: https://doi.org/10.1038/s41746-023-00913-9
14. Straw I, Rees G, Nachev P. Sex-Based Performance Disparities in Machine Learning Algorithms for Cardiac Disease Prediction: Exploratory Study. J Med Internet Res; 2024; 26:e46936. Disponible en: https://doi.org/10.2196/46936
15. Akter S, Dwivedi YK, Sajib S, Biswas K, Bandara RJ, Michael K. Algorithmic bias in machine learning-based marketing models. J. Bus. Res. 2022; 144:201-216. Disponible en: https://doi.org/10.1016/j.jbusres.2022.01.083
16. U.S. Department of Education, Office of Educational Technology. Artificial Intelligence and Future of Teaching and Learning: Insights and Recommendations. Washington; 2023.
17. Bostrom N. A history of transhumanist thought. Journal of Evolution and Technology. 2005; 14(1):1-25. Disponible en: https://nickbostrom.com/papers/a-history-of-transhumanist-thought/
18. Diéguez A. Transhumanismo: la búsqueda tecnológica del mejoramiento humano. Barcelona: Herder; 2017.
19. Harvard University. Justice with Michael Sandel - CCCB: Bioethics: Designer children. [video]; 2011. Disponible en: https://youtu.be/aFcfygkMM0I
20. Tobin H. Transhumanismo SuperPoderes Humanos – Castellano. [video]; 2016. Disponible en: https://www.youtube.com/watch?v=ClxzKdfQAkY
21. Fuentes, MÁ. Principios fundamentales de bioética. Roma: Instituto del Verbo Encarnado; 2006.
22. Berti B. Los principios de la bioética. Prudent Iuris. 2015; (79):269-280. Disponible en: https://erevistas.uca.edu.ar/index.php/PRUDENTIA/article/view/4030
23. Thompson J. (2017). Transhumanism: How Far Is Too Far? The new bioethics. 2017; 23(2):165–182. Disponible en: https://doi.org/10.1080/20502877.2017.1345092
24. Floridi L. The Logic of Information: A Theory of Philosophy as Conceptual Design. Oxford: Oxford University Press; 2019.
25. Beauchamp T, Childress, JF. Principles of biomedical ethics. Oxford: Oxford University Press; 2019.
26. Sgreccia E. Manual de bioética: fundamentos y ética biomédica. Navarra: EUNSA; 2016.
27. Latour B. Where Are the Missing Masses? The Sociology of a Few Mundane Artifacts. En Bijker W, Law J. Shaping Technology-Building Society. Studies in Sociotechnical Change. MIT Press, Cambridge Mass; 1992.
28. Future of Life Institute. Asilomar AI Principles. De Future of Life Institute; 2017. Disponible en: https://futureoflife.org/ai-principles/
29. Paglia VS. Rome Call for AI Ethic; 2023. Disponible en: https://www.romecall.org/wp-content/uploads/2022/03/RomeCall_Paper_web.pdf
30. Mittelstadt BD, Allo P, Taddeo M, Wachter S, Floridi L. The Ethics of Algorithms: Mapping the Debate. Big Data Soc. 2016; 3(2). Disponible en: https://doi.org/10.1177/2053951716679679
31. Attiah M, Farah M. Minds, motherboards, and money: futurism and realism in the neuroethics of BCI technologies. Front Syst Neurosci. 2014; 86(8):1-3. https://doi.org/10.3389/fnsys.2014.00086
32. Evans J. Faith in Science in Global Perspective: Implications for Transhumanism. Public Underst Sci. 2014; 23(7):1-33. Disponible en: https://doi.org/10.1177/0963662514523712
33. Schaefer O, Savulescu J. Better Minds, Better Morals: A Procedural Guide to Better Judgement. J. Posthuman Stud. 2017; 1(1):26-43. Disponible en: http://dx.doi.org/10.5325/jpoststud.1.1.0026
34. Zehr P. Future think: cautiously optimistic about brain augmentation using tissue engineering and machine interface. Front Syst Neurosci. 2015; 9(72):1-5. Disponible en: https://doi.org/10.3389/fnsys.2015.00072
35. Huxley A. Un mundo feliz. México: Éxodo; 2011.
36. Doshi-Velez F, Narayanan M, Chen E, He J, Kim B, Gershman S. How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation. New York: Cornell University; 2018. Disponible en: https://doi.org/10.48550/arXiv.1802.00682
37. Felzmann H, Fosch-Villaronga E, Lutz C, Tamò-Larrieux A. Towards Transparency by Design for Artificial Intelligence. Sci Eng Ethics. 2020; 26(6):3333–3361. Disponible en: https://doi.org/10.1007/s11948-020-00276-4
38. Kirat T, Tambou O, Do V, Tsoukiàs A. Fairness and explainability in automatic decision-making systems. A challenge for computer science and law. EURO J. Decis. Process. 2023; 11:1-19. Disponible en: https://doi.org/10.1016/j.ejdp.2023.100036
39. Gavilán I. Ideas y buenas prácticas para evitar el sesgo algorítmico. En: Ignacio G.R. Gavilán; 2022. Disponible en: https://ignaciogavilan.com/ideas-y-buenas-practicas-para-evitar-el-sesgo-algoritmico/
40. Sandu E. Sesgo en los algoritmos de inteligencia artificial: causas y soluciones. metaverso.pro - Metaverso para Profesionales; 2023. Disponible en: https://metaverso.pro/blog/sesgo-en-los-algoritmos-de-inteligencia-artificial-causas-y-soluciones/
41. UNESCO. Inteligencia artificial y educación: guía para las personas a cargo de formular políticas. Francia: UNESCO; 2021.
42. Comisión Europea. Reglamento del Parlamento Europeo y del Consejo por el que se establecen normas armonizadas en materia de Inteligencia Artificial (Ley de Inteligencia Artificial) y se modifican diversos actos legislativos de la Unión. Bruselas; 2024.
43. Gebru T, Morgenstern J, Vecchione B, Wortman J, Wallach H, Daume HI, Crawford K. Datasheets for Datasets. Commun ACM. 2021; 64(12):86-92. Disponible en: https://doi.org/10.1145/3458723