Ethical reflections on the impact and challenges of artificial intelligence in laboratory medicine

Main Article Content

Carlos Román
Jonathan Brenner
Diego Andrade

Abstract

The use of artificial intelligence (AI) in laboratory medicine (LM) has led to a qualitative leap in the diagnosis of diseases that afflict humans. The development of robots for measurement, calculation and prediction has increased the reliability, validity and reproducibility of AI diagnostic tests, leading to an easy choice of such technology in the clinical laboratory. However, AI in LM entails several ethical reflections that need to be considered. The incipient technology under development, the presence of cognitive biases in algorithms and data, the uncertainty of robot performance, technological limitations, the threat to privacy, and the absence of a legal framework open ethical conflicts that lacerate human equity, safety, and autonomy. The technological imperative of AI in LM must not overcome responsibility, nor infringe on the dignity of the person.

Downloads

Download data is not yet available.

PLUMX Metrics

Article Details

How to Cite
Román Collazo, C. A. ., Brenner, J. ., & Andrade Campoverde, D. . (2024). Ethical reflections on the impact and challenges of artificial intelligence in laboratory medicine. Medicina Y Ética, 35(4), 1137–1193. https://doi.org/10.36105/mye.2024v35n4.05
Section
Articles
Author Biographies

Carlos Román , D. in Applied Bioethics, MEDsan Inc. Clinical Laboratory Technologist, Saint Petersburg, Florida

D. in Applied Bioethics, MEDsan Inc. Clinical Laboratory Technologist, Saint Petersburg,
Florida

Jonathan Brenner, Doctor of Business, MEDsan Inc., CEO, Saint Petersburg, Florida.

Doctor of Business, MEDsan Inc., CEO, Saint Petersburg, Florida.

Diego Andrade, D. in applied bioethics, director of the Bachelor’s degree in biochemistry and pharmacy, Universidad Católica de Cuenca, Ecuador.

D. in applied bioethics, director of the Bachelor’s degree in biochemistry and pharmacy,
Universidad Católica de Cuenca, Ecuador.

References

Sciacovelli L, Padoan A, Aita A, Basso D, Plebani M. Quality indicators in laboratory medicine: state-of-the-art, quality specifications and future strategies. Clin Chem Lab Med CCLM [Internet]. 2023 [citado 19 de marzo de 2024]; 61(4):688- 95. Disponible en: https://www.degruyter.com/document/doi/10.1515/cclm-2022-1143/html

Lippi G, Plebani M. A modern and pragmatic definition of Laboratory Medicine. Clin Chem Lab Med CCLM [Internet]. 2020 [citado 22 de febrero de 20204]; 58(8):1171-1171. Disponible en: https://www.degruyter.com/document/doi/10.1515/cclm-2020-0114/html

Plebani M. Quality in laboratory medicine and the journal: walking together. Clin Chem Lab Med CCLM [Internet]. 2023 [citado 19 de marzo de 2024]; 61(5):713- 20. Disponible en: https://www.degruyter.com/document/doi/10.1515/cclm-2022- 0755/html

Gruson D. Big Data, inteligencia artificial y medicina de laboratorio: la hora de la integración. Adv Lab Med [Internet]. 2021 [citado 19 de marzo de 2024]; 2(1):5-7. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197294/

Herman DS, Rhoads DD, Schulz WL, Durant TJS. Artificial intelligence and mapping a new direction in laboratory medicine: a review. Clin Chem [Internet]. 2021 [citado 22 de febrero de 2024]; 67(11):1466-82. Disponible en: https://doi.org/10.1093/clinchem/hvab165

El Nahhas OSM, Loeffler CML, Carrero ZI, van Treeck M, Kolbinger FR, Hewitt KJ. Regression-based Deep-Learning predicts molecular biomarkers from pathology slides. Nat Commun [Internet]. 2024 [citado 19 de marzo de 2024]; 15:1253. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858881/

Briganti G, Le Moine O. Artificial Intelligence in Medicine: Today and Tomorrow. Front Med [Internet]. 2020 [citado 19 de marzo de 2024]; 7. Disponible en: https://doi.org/10.3389/fmed.2020.00027

Pennestrì F, Banfi G. Artificial intelligence in laboratory medicine: fundamental ethical issues and normative key-points. Clin Chem Lab Med CCLM [Internet]. 2022 [citado 22 de febrero de 2024]; 60(12):1867-74. Disponible en: https://doi.org/10.1515/cclm-2022-0096

González Arencibia M, Martínez Cardero D. Dilemas éticos en el escenario de la inteligencia artificial. Econ Soc [Internet]. 2020 [citado 19 de marzo de 2024]; 25(57):93-109. Disponible en: http://www.scielo.sa.cr/scielo.php?script=sci_abs-tract&pid=S2215-34032020000100093&lng=en&nrm=iso&tlng=es

Zhang C, Lu Y. Study on artificial intelligence: The state of the art and future prospects. J Ind Inf Integr [Internet]. 2021 [citado 19 de marzo de 2024]; 23:100224. Disponible en: https://www.sciencedirect.com/science/article/pii/S2452414X21000248

MintzY,BrodieR.Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol [Internet]. 2019 [citado 19 de marzo de 2024]; 28(2):73-81. Disponible en: https://doi.org/10.1080/13645706.2019.1575882

Avila-Tomás JF, Mayer-Pujadas MA, Quesada-Varela VJ. La inteligencia artificial y sus aplicaciones en medicina I: introducciones antecedentes a la IA y robótica. Aten Primaria [Internet]. 2020 [citado 22 de febrero de 2024]; 52(10):778-84. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0212656720301451

Porcelli AM. Inteligencia Artificial y la Robótica: sus dilemas sociales, éticos y jurídicos. Derecho Glob Estud Sobre Derecho Justicia [Internet]. 2020 [citado 19 de marzo de 2024]; 6(16):49-105. Disponible en: http://www.derechoglobal.cucsh.udg.mx/index.php/DG/article/view/286

Koteluk O, Wartecki A, Mazurek S, KołodziejczakI, Mackiewicz A. How do machines learn? Artificial intelligence as a new era in medicine. J Pers Med [Internet]. 2021 [citado 19 de marzo de 2024]; 11(1):32. Disponible en: https://www.mdpi.com/2075-4426/11/1/32

Gates B.gatesnotes.com. [citado 19 de marzo de 2024]. The Age of AI has begun. Disponible en: https://www.gatesnotes.com/The-Age-of-AI-Has-Begun

Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI ,Almohareb SN. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ [Internet]. 2023 [citado 22 de febrero de 2024]; 23(1):689. Disponible en: https://doi.org/10.1186/s12909-023-04698-z

Haymond S, McCudden C. Rise of the machines: artificial intelligence and the clinical laboratory. J Appl Lab Med [Internet]. 2021 [citado 22 de febrero de 2024]; 6(6):1640-54. Disponible en: https://doi.org/10.1093/jalm/jfab075

Naugler C, Church DL. Automation and artificial intelligence in the clinical laboratory. Crit Rev Clin Lab Sci [Internet]. 2019 [citado 22 de febrero de 2024]; 56(2):98- 110. Disponible en: https://doi.org/10.1080/10408363.2018.1561640

Holland I, Davies JA. Automation in the life science research laboratory. Front Bioeng Biotechnol [Internet]. 2020 [citado 19 de marzo de 2024]; 8. Disponible en: https://www.frontiersin.org/articles/10.3389/fbioe.2020.571777

Dobrijević D, Vilotijević-Dautović G, Katanić J, Horvat M, Horvat Z, Pastor K. Rapid triage of children with suspected COVID-19 using laboratory-based machine-learning algorithms. Viruses [Internet]. 2023 [citado 22 de febrero de 2024]; 15(7):1522. Disponible en: https://www.mdpi.com/1999-4915/15/7/1522

Wang H, Wang H, Zhang J, Li X, Sun C, Zhang Y. Using machine learning to develop an auto verification system in a clinical biochemistry laboratory. Clin Chem Lab Med CCLM [Internet]. 2021 [citado 19 de marzo de 2024]; 59(5):883-91. Disponible en: https://www.degruyter.com/document/doi/10.1515/cclm-2020-0716/html?lang=en

Enko D, Stelzer I, Böckl M, Derler B, Schnedl WJ, Anderssohn P. Comparison of the diagnostic performance of two automated urine sediment analyzers with manual phase-contrast microscopy. Clin Chem Lab Med. 2020; 58(2):268-73. https://doi.org/10.1515/cclm-2019-0919

Acevedo A, Alférez S, Merino A, Puigví L, Rodellar J. Recognition of peripheral blood cell images using convolutional neural networks. Comput Methods Programs Biomed [Internet]. 2019 [citado 19 de marzo de 2024]; 180:105020. Disponible en: https://www.sciencedirect.com/science/article/pii/S0169260719303578

Wang L, Chen X, Zhang L, Li L, Huang Y, Sun Y. Artificial intelligence in clinical decision support systems for oncology. Int J Med Sci [Internet]. 2023 [citado 19 de marzo de 2024]; 20(1):79-86. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812798/

Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Image analysis and machine learning for detecting malaria. Transl Res J Lab Clin Med [Internet]. 2018 [citado 19 de marzo de 2024]; 194:36-55. Disponible en: https://www.translationalres.com/article/S1931-5244(17)30333-X/fulltext

Zhang ML, Guo AX, Kadauke S, Dighe AS, Baron JM, Sohani AR. Machine lear- ning models improve the diagnostic yield of peripheral blood flow cytometry. Am J Clin Pathol. 2020; 153(2):235-42.

Bailey AL, Ledeboer N, Burnham CAD. Clinical microbiology is growing up: the total laboratory automation revolution. Clin Chem. 2019; 65(5):634-43.

Ng DP, Zuromski LM. Augmented human intelligence and automated diagno- sis in flow cytometry for hematologic malignancies. Am J Clin Pathol. 2021; 155(4):597-605.

Undru TR, Uday U, Lakshmi JT, Kaliappan A, Mallamgunta S, Nikhat SS. Integrating artificial intelligence for clinical and laboratory diagnosis - a review. Mædica [Internet]. 2022 Jun [citado 22 de febrero de 2024]; 17(2):420-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375890/

Zhang YF, Zhou C, Guo S, Wang C, Yang J, Yang ZJ. Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer. J Cancer Res Clin Oncol [Internet]. 2024 [citado 19 de marzo de 2024]; 150(2):78. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844393/

Zhong R, Gao T, Li J, Li Z, Tian X, Zhang C. The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis. Front Oncol [Internet]. 2024 [citado 19 de marzo de 2024]; 14:1346010. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869611/

Stegmüller T, Abbet C, Bozorgtabar B, Clarke H, Petignat P, Vassilakos P. Self-supervised learning-based cervical cytology for the triage of HPV-positive women in resource-limited settings and low-data regime. Comput Biol Med [Internet]. 2024 [citado 19 de marzo de 2024]; 169:107809. Disponible en: https://www.sciencedi-rect.com/science/article/pii/S001048252301274X

Guerra A, Orton MR, Wang H, Konidari M, Maes K, Papanikolaou NK. Clinical application of machine learning models in patients with prostate cancer before prostatectomy. Cancer Imaging [Internet]. 2024 [citado 19 de marzo de 2024]; 24:24. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10854130/

Lv Q, Liu Y, Sun Y, Wu M. Insight into deep learning for glioma IDH medical image analysis: A systematic review. Medicine (Baltimore) [Internet]. 2024 [citado 19 de marzo de 2024]; 103(7):e37150. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869095/

Lin H, Ni L, Phuong C, Hong JC. Natural Language Processing for Radiation Oncology: Personalizing Treatment Pathways. Pharmacogenomics Pers Med [Inter- net]. 2024 [citado 19 de marzo de 2024]; 17:65-76. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874185/

Rietjens JAC, Griffioen I, Sierra-Pérez J, Sroczynski G, Siebert U, Buyx A. Improving shared decision-making about cancer treatment through design-based data-driven decision-support tools and redesigning care paths: an overview of the 4D PICTURE project. Palliat Care Soc Pract [Internet]. 2024 [citado 19 de marzo de 2024]; 18:26323524231225249. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863384/

Saif-Ur-Rahman K, Islam MS, Alaboson J, Ola O, Hasan I, Islam N. Artificial intelligence and digital health in improving primary health care service delivery in LMICs: A systematic review. J Evid-Based Med [Internet]. 2023 [citado 20 de marzo de 2024]; 16(3):303-20. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/jebm.12547

Baron JM. Artificial intelligence in the clinical laboratory: an overview with frequently asked questions. Clin Lab Med [Internet]. 2023 [citado 20 de marzo de 2024]; 43(1):1-16. Disponible en: https://www.labmed.theclinics.com/article/S0272-2712(22)00060-9/abstract

Sloane EB, J. Silva R. Chapter 83 - Artificial intelligence in medical devices and clinical decision support systems. In: Iadanza E, editor. Clinical Engineering Han- dbook (Second Edition) [Internet]. Academic Press; 2020 [citado 20 de marzo de 2024]:556-68. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780128134672000845

OMS. Estrategia mundial sobre salud digital 2020-2025 [Internet]. Ginebra:OMS; 2021 [citado 20 de marzo de 2024]. Disponible en: https://iris.who.int/bitstream/handle/10665/344251/9789240027572-spa.pdf?sequence=1&isAllowed=y

Murphy K, Di Ruggiero E, Upshur R, Willison DJ, Malhotra N, Cai JC. Artificial intelligence for good health: a scoping review of the ethics literature. BMC Med Ethics [Internet]. 2021 [citado 20 de marzo de 2024]; 22(1):14. Disponible en: https://doi.org/10.1186/s12910-021-00577-8

Meyer AND, Giardina TD, Spitzmueller C, Shahid U, Scott TMT, Singh H. Patient perspectives on the usefulness of an artificial intelligence-assisted symptom chec- ker: cross-sectional survey study. J Med Internet Res [Internet]. 2020 [citado 20 de marzo de 2024]; 22(1): e14679. Disponible en: https://www.jmir.org/2020/1/e14679

Wadhwa V, Alagappan M, Gonzalez A, Gupta K, Brown JRG, Cohen J. Physician sentiment toward artificial intelligence (AI) in colonoscopic practice: a survey of US gastroenterologists. Endosc Int Open [Internet]. 2020 [citado 20 de marzo de 2024]; 08(10):E1379-84. Disponible en: http://www.thieme-connect.de/DOI/DOI?10.1055/a-1223-1926

Pita EV. La UNESCO y la gobernanza de la inteligencia artificial en un mundo globalizado. La necesidad de una nueva arquitectura legal. Anu Fac Derecho [Internet]. 2021 [citado 20 de marzo de 2024]; (37):273-302. Disponible en: https://revista-afd.unex.es/index.php/AFD/article/view/1028

Hagendorff T. The Ethics of AI Ethics: An Evaluation of Guidelines. Minds Mach [Internet]. 2020 [citado 22 de febrero de 2024]; 30(1):99-120. Disponible en: https://doi.org/10.1007/s11023-020-09517-8

Grunhut J, Wyatt AT, Marques O. Educating future physicians in artificial intelligence (AI): an integrative review and proposed changes. J Med Educ Curric Dev [In- ternet]. 2021 [citado 20 de marzo de 2024]; 8:23821205211036836. Disponible en: https://doi.org/10.1177/23821205211036836

Juravle G, Boudouraki A, Terziyska M, Rezlescu C. Chapter 14 - Trust in artificial intelligence for medical diagnoses. In: Parkin BL, editor. Progress in Brain Research [Internet]. Elsevier; 2020 [citado 20 de marzo de 2024]:263-82. (Real-World Applications in Cognitive Neuroscience; vol. 253). Disponible en: https://www.sciencedirect.com/science/article/pii/S0079612320300819

Nelson CA, Pérez-Chada LM, Creadore A, Li SJ, Lo K, Manjaly P. Patient perspectives on the use of artificial intelligence for skin cancer screening: a qualitative study. JAMA Dermatol [Internet]. 2020 [citado 20 de marzo de 2024]; 156(5):501- 12. Disponible en: https://doi.org/10.1001/jamadermatol.2019.5014

Yakar D, Ongena YP, Kwee TC, Haan M. Do people favor artificial intelligence over physicians? A survey among the general population and their view on artificial intelligence in medicine. Value Health [Internet]. 2022 [citado 20 de marzo de 2024]; 25(3):374-81. Disponible en: https://www.sciencedirect.com/science/article/pii/S1098301521017411

Asan O, Bayrak AE, Choudhury A. Artificial Intelligence and human trust in Healthcare: focus on clinicians. J Med Internet Res [Internet]. 2020 [citado 20 de marzo de 2024] ;22(6): e15154. Disponible en: https://www.jmir.org/2020/6/e15154

Trainini J, Hornos Barberis E, Aranovich R. Aportes a la comprensión de la problemática actual de la trilogía médico-paciente-tecnología. Rev Argent Cardiol [Internet]. 2023 [citado 20 de marzo de 2024]; 91(4):298-301. Disponible en: https://rac.sac.org.ar/index.php/rac/article/view/214/608

Di Giorgio AM, Ehrenfeld JM. Artificial Intelligence in Medicine & Chat GPT: De-Te- ther the physician. J Med Syst [Internet]. 2023 [citado 20 de marzo de 2024]; 47(1):32. Disponible en: https://doi.org/10.1007/s10916-023-01926-3

Arnold MH. Teasing out artificial intelligence in medicine: an ethical critique of artificial intelligence and machine learning in medicine. J Bioethical Inq [Internet]. 2021 [citado 22 de febrero de 2024]; 18(1):121-39. Disponible en: https://doi.org/10.1007/s11673-020-10080-1

Blanc CA. “El despertar de las máquinas”: Reflexiones sobre el estatus moral y jurídico de la Inteligencia Artificial. Rev Int Pensam Político [Internet]. 2023 Dec 22 [citado 20 de marzo de 2024]; 18:213-42. Disponible en: https://upo.es/revistas/index.php/ripp/article/view/8529

Rueda J. ¿Automatizando la mejora moral humana? La inteligencia artificial para la ética: Nota crítica sobre Lara, F. y Savalescu, J (eds.) (2021), Más (que) humanos. Biotecnología, inteligencia artificial y ética de la mejora. Madrid: Tecnos. Daimon Rev Int Filos [Internet]. 2023 [citado 20 de marzo de 2024];(89):199-209. Disponible en: https://revistas.um.es/daimon/article/view/508771

Sinnott-Armstrong W, Skorburg J (Gus) A. How AIcanaid bioethics. J Pract Ethics [Internet]. 2021 [citado 20 de marzo de 2024]; 9(1). Disponible en: https://journals.publishing.umich.edu/jpe/article/id/1175/

Beaunoyer E, Dupéré S, Guitton MJ. COVID-19 and digital inequalities: Reciprocal impacts and mitigation strategies. Comput Hum Behav [Internet]. 2020 [citado 20 de marzo de 2024]; 111:106424. Disponible en: https://www.sciencedirect.com/science/article/pii/S0747563220301771

Ramírez GM. Problemática antropológica detrás de la discriminación generada a partir de los algoritmos de la inteligencia artificial. Med Ética [Internet]. 2023 [citado 20 de marzo de 2024]; 34(2):429-80. Disponible en: https://revistas.anahuac.mx/index.php/bioetica/article/view/1669

Chen JH, Verghese A. Planning for the known unknown: machine learning for human healthcare systems. Am J Bioeth [Internet]. 2020 [citado 20 de marzo de 2024]; 20(11):1-3. Disponible en: https://doi.org/10.1080/15265161.2020.1822674

Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Invest [Internet]. 2021 [citado 20 de marzo de 2024]; 101(4):412-22. Disponible en: https://www.sciencedirect.com/science/article/pii/S0023683722006468

Corti C, Cobanaj M, Dee EC, Criscitiello C, Tolaney SM, Celi LA. Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. Cancer Treat Rev [Internet]. 2023 [citado 20 de marzo de 2024]; 112:102498. Disponible en: https://www.sciencedirect.com/science/article/pii/S0305737222001748

Daneshjou R, Smith MP, Sun MD, Rotemberg V, Zou J. Lack of transparency and potential bias in artificial intelligence data sets and algorithms: a scoping review. JAMA Dermatol [Internet]. 2021 [citado 20 de marzo de 2024]; 157(11):1362-9. Disponible en: https://doi.org/10.1001/jamadermatol.2021.3129

Wang H, Fu T, Du Y, Gao W, Huang K, Liu Z. Scientific discovery in the age of artificial intelligence. Nature [Internet]. 2023 [citado 20 de marzo de 2024]; 620(7972):47-60. Disponible en: https://www.nature.com/articles/s41586-023-06221-2

Cirillo D, Catuara-Solarz S, Morey C, Guney E, Subirats L, Mellino S. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. Npj Digit Med [Internet]. 2020 [citado 20 de marzo de 2024]; 3(1):1-11. Disponible en: https://www.nature.com/articles/s41746-020-0288-5

Sarker IH. Machine Learning: algorithms, real-world applications and research directions. SN Comput Sci [Internet]. 2021 [cited 2024 Mar 21]; 2(3):160. Disponible en: https://doi.org/10.1007/s42979-021-00592-x

Jussupow E, Spohrer K, Heinzl A, Gawlitza J. Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence. Inf Syst Res [Internet]. 2021 [citado 20 de marzo de 2024]; 32(3):713- 35. Disponible en: https://pubsonline.informs.org/doi/abs/10.1287/isre.2020.0980

Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics [Internet]. 2021 [citado 20 de marzo de 2024]; 22(1):122. Disponible en: https://doi.org/10.1186/s12910-021-00687-3

Larson DB, Magnus DC, Lungren MP, Shah NH, Langlotz CP. Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. Radiology [Internet]. 2020 [citado 20 de marzo de 2024]; 295(3):675-82. Disponible en: https://pubs.rsna.org/doi/full/10.1148/radiol.2020192536

Coiera E. Depender de los datos: la gran debilidad de la IA moderna. Rev Innova Salud Digit [Internet]. 2020 [citado 20 de marzo de 2024]; (1):23-6. Disponible en: https://www1.hospitalitaliano.org.ar/landing/innova-salud-digital/sites/default/files/2022-09/11_RevistaInnovaSaludDigitalN1_2020v2.pdf

Baptiste D, Caviness-Ashe N, Josiah N, Commodore-Mensah Y, Arscott J, Wilson PR. Henrietta Lacks and America’s dark history of research involving African Americans. Nurs Open [Internet]. 2022 [citado 20 de marzo de 2024]; 9(5):2236-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374392/