Identifying glial scar tissue using infrared thermography: a spinal cord injury pilot study

Autores/as

  • Tamara Daniela Frydman Universidad Anáhuac México, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud https://orcid.org/0000-0003-3207-3135
  • Margarita Gómez-Chavarín Universidad Nacional Autónoma de México, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas https://orcid.org/0000-0002-2038-668X
  • Roxana Rodríguez-Barrera Universidad Anáhuac México, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud https://orcid.org/0000-0003-4457-1422
  • Elisa García-Vences Universidad Anáhuac México, Universidad Anáhuac México, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud https://orcid.org/0000-0001-7588-3846
  • Adrián Flores-Romero Universidad Anáhuac México, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud https://orcid.org/0000-0001-7588-3846
  • Ivonne Hernández-Gutiérrez ,Universidad Anáhuac México, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud https://orcid.org/0000-0002-3040-4837
  • Gabriel Gutiérrez-Ospin Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México. https://orcid.org/0000-0002-6286-8281
  • Antonio Ibarra Universidad Anáhuac México, ,Universidad Anáhuac México, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud https://orcid.org/0000-0002-3040-4837

DOI:

https://doi.org/10.36105/psrua.2021v1n1.03

Palabras clave:

spinal cord injury, infrared thermography, glial scar

Resumen

Introducción: La cicatriz glial de una lesión de médula espinal (LME) es una barrera física y molecular para la regeneración axonal, por lo que su resección es útil en la recuperación en modelos animales. Para que esta resección sea factible en humanos, es necesario un método claro de identificación de tejido cicatricial sin provocar mayor daño. Objetivo: Este estudio busca evaluar la utilidad de la termografía infrarroja en la identificación de la cicatriz glial en LME crónica. Materiales y métodos: Se realizó un estudio piloto exploratorio experimental con ratas Sprague-Dawley divididas en un grupo sham y un grupo de LME (T9). Se realizó una termografía basal poslaminectomía en todos los animales, seguida de cierre de la herida o LME y se obtuvo una segunda termografía 5 semanas después. Se retiro la médula (T8-T10) y se realizó inmunohistoquímica anti-GFAP (proteína ácida fibrilar glial) como estándar para el marcaje de células de la glia. Todos los animales recibieron los mismos cuidados. Resultados: No hubo diferencia estadística entre los valores basales de la termografía (p = 0.24); sin embargo, 5 semanas después se observó una diferencia significativa en los valores presentados en la zona de lesión de los animales con LME (p = 0.01). Esta diferencia presentó una correlación significativa con la cantidad de astrocitos (r –0.57; p = 0.03, prueba de correlación de Spearman). Conclusiones: La termografía puede ser de gran utilidad para conocer la extensión de la cicatriz glial observada después de una LME.

Descargas

Los datos de descargas todavía no están disponibles.

PLUMX metrics

Citas

1. Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, et al. International standards for neurological classification of spinal cord injury. The journal of spinal cord medicine. 2003;26(sup1):S50-S6. https://doi.org/10.1080/10790268.2003.11754575
2. Passias PG, Poorman GW, Segreto FA, Jalai CM, Horn SR, Bortz CA, et al. Traumatic fractures of the cervical spine: analysis of changes in incidence, cause, concurrent injuries, and complications among 488,262 patients from 2005 to 2013. World neurosurgery. 2018;110:e427-e37. https://doi.org/10.1016/j.wneu.2017.11.011
3. Frydman TD, Ibarra A. Spinal Cord Injury Therapy. IntechOpen; 2019. Introductory Chapter: Trends in Therapeutic Strategies after Spinal Cord Injury.
4 .Ahuja CS, Fehlings M. Concise review: bridging the gap: novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem cells translational medicine. 2016;5(7):914-24. http://doi.org/10.5772/intechopen.86687
5. Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends in immunology. 2016;37(9):608-20. https://doi.org/10.1016/j.it.2016.06.006
6 .Silver J, Miller JH. Regeneration beyond the glial scar. Nature reviews neuroscience. 2004;5(2):146. https://doi.org/10.1038/nrn1326
7. Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury—beneficial and detrimental effects. Molecular neurobiology. 2012;46(2):251-64. https://doi.org/10.1007/s12035-012-8287-4
8. Yuan Y-M, He C. The glial scar in spinal cord injury and repair. Neuroscience bulletin. 2013;29(4):421-35. https://doi.org/10.1007/s12264-013-1358-3
9. Rodríguez-Barrera R, Flores-Romero A, Fernández-Presas AM, García-Vences E, Silva-García R, Konigsberg M, et al. Immunization with neural derived peptides plus scar removal induces a permissive microenvironment, and improves locomotor recovery after chronic spinal cord injury. BMC neuroscience. 2017;18(1):7. https://doi.org/10.1186/s12868-016-0331-2
10. Vollmer M, Möllmann KP. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications. European Journal of Physics. 2011;32:1431. https://doi.org/10.1088/0143-0807/32/5/B01
11. Gaussorgues GC, S. Infrared Thermography: Springer Netherlands; 1994. http://doi.org/10.1007/978-94-011-0711-2
12. Rogalski A. History of infrared detectors. Opto-Electronics Review. 2012;20(3):279-308. https://doi.org/10.2478/s11772-012-0037-7
13. Yang T, Dai Y, Chen G, Cui S. Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Frontiers in Cellular Neuroscience. 2020;14:78. https://doi.org/10.3389/fncel.2020.00078
14. Research IfLA. Guide for the Care and Use of Laboratory Animals. United States of America: National Research Council; 2011. https://doi.org/10.17226/12910.
15. Federal DdG. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. In: Secretaría de Agricultura, Ganadería DR, Pesca y Alimentación, editors. México: Diario Oficial de la Federación; 1999.
16. Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neuroscience research. 2018;126:39-43. https://doi.org/10.1016/j.neures.2017.10.004
17. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology. 2019;10:282. https://doi.org/10.3389/fneur.2019.00282
18 .Li X, Yang B, Xiao Z, Zhao Y, Han S, Yin Y, et al. Comparison of subacute and chronic scar tissues after complete spinal cord transection. Experimental neurology. 2018;306:132-7. https://doi.org/10.1016/j.expneurol.2018.05.008
19. Tom VJ, Sandrow-Feinberg HR, Miller K, Santi L, Connors T, Lemay MA, et al. Combining peripheral nerve grafts and chondroitinase promotes functional axonal regeneration in the chronically injured spinal cord. Journal of Neuroscience. 2009;29(47):14881-90. https://doi.org/10.1523/JNEUROSCI.3641-09.2009
20. Zhang SX, Huang F, Gates M, Holmberg EG. Scar ablation combined with LP/OEC transplantation promotes anatomical recovery and P0-positive myelination in chronically contused spinal cord of rats. Brain research. 2011;1399:1-14. https://doi.org/10.1016/j.brainres.2011.05.005
21. Zhang S, Huang F, Gates M, Holmberg E. Scar Removal, Cell Transplantation, and Locomotor Training- Strategies to Improve Tissue Repair and Functional Recovery in Rat with Chronic Spinal Cord Injury. International Journal of Physical Medicine & Rehabilitation. 2014;2(233):2. https://doi.org/10.4172/2329-9096.1000233
22. Stroop WG, Chen TM, Chodosh J, Kienzle TE, Stroop JL, Ling J-Y, et al. PCR assessment of HSV-1 corneal infection in animals treated with rose bengal and lissamine green B. Investigative ophthalmology & visual science. 2000;41(8):2096-102.
23. Rasouli A, Bhatia N, Dinh P, Cahill K, Suryadevara S, Gupta R. Resection of glial scar following spinal cord injury. Journal of Orthopaedic Research. 2009;27(7):931-6. https://doi.org/10.1002/jor.20793.
24. Liddelow S, Barres B. Not everything is scary about a glial scar. Nature. 2016;532:182–183. https://doi.org/10.1038/nature17318
25. Mautes AEM, Weinzierl MR, Donovan F, Noble L. Vascular Events After Spinal Cord Injury: Contribution to Secondary Pathogenesis. Physical Therapy. 2000;80(7):673–687. https://doi.org/10.1093/ptj/80.7.673
26. Renault-Mihara F, Okada S, Shibata S, Nakamura M, Toyama Y, Okano H. Spinal cord injury: emerging beneficial role of reactive astrocytes’ migration. The international journal of biochemistry & cell biology. 2008;40(9):1649-1653. https://doi.org/10.1016/j.biocel.2008.03.009

Descargas

Archivos adicionales

Publicado

2021-07-22

Cómo citar

Frydman, T. D., Gómez-Chavarín, M., Rodríguez-Barrera, R., García-Vences, E., Flores-Romero, A., Hernández-Gutiérrez, I., Gutiérrez-Ospin, G., & Ibarra, A. (2021). Identifying glial scar tissue using infrared thermography: a spinal cord injury pilot study. Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare, 1(1), 22–29. https://doi.org/10.36105/psrua.2021v1n1.03