Bioinformatics approaches for Biomedical Research
DOI:
https://doi.org/10.36105/psrua.2022v2n3.04Keywords:
bioinformatics, biomedicine, comparative genomics, biomarkers, computer-aided drug design, vaccine design, personalized medicineAbstract
An enormous amount of data is generated and compiled in several databases every year. Along with this, comes a demand for the analysis and interpretation of the entirety of this biological information. Taking care of this task, bioinformatics promises breakthroughs in research and development in complex biomedical areas. In just a few years since its beginning, bioinformatics has led to great progress and demonstrated its potential. It has created an opportunity to solve arising medical and molecular issues faster and more efficiently, as compared to the traditional approach. The present review aims to present some of the main applications of bioinformatics in the field of biomedicine, such as comparative genomics, biomarker identification, computer-aided drug design, vaccine design, and personalized medicine. In addition, we also cover some of its steadily reduced limitations.
Downloads
PLUMX metrics
References
Hao S, Lv J, Yang Q, Wang A, Li Z, Guo Y, et al. Identification of Key Genes and Circular RNAs in Human Gastric Cancer. Med Sci Monit. 2019 Apr 5;25:2488–504. https://doi.org/10.12659/MSM.915382
Liu W, Ouyang S, Zhou Z, Wang M, Wang T, Qi Y, et al. Identification of genes associated with cancer progression and prognosis in lung adenocarcinoma: Analyses based on microarray from Oncomine and The Cancer Genome Atlas databases. Mol Genet Genomic Med [Internet]. 2019 Feb [cited 2021 Oct 9];7(2). Available from: https://onlinelibrary.wiley.com/doi/10.1002/mgg3.528
Bayat A. Science, medicine, and the future: Bioinformatics. BMJ. 2002 Apr 27;324(7344):1018–22. https://doi.org/10.1136/bmj.324.7344.1018
Akalın PK. Introduction to bioinformatics. Mol Nutr Food Res. 2006 Jul;50(7):610–9. https://doi.org/10.1002/mnfr.200500273
Xu J, McPartlon M, Li J. Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat Mach Intell. 2021 Jul;3(7):601–9. https://doi.org/10.1038/s42256-021-00348-5
Padilla‐Rojas C, Jimenez‐Vasquez V, Hurtado V, Mestanza O, Molina IS, Barcena L, et al. Genomic analysis reveals a rapid spread and predominance of lambda (C.37) SARS‐COV‐2 lineage in Peru despite circulation of variants of concern. J Med Virol. 2021 Dec;93(12):6845–9. https://doi.org/10.1002/jmv.27261
Branco I, Choupina A. Bioinformatics: new tools and applications in life science and personalized medicine. Appl Microbiol Biotechnol. 2021 Feb;105(3):937–51. https://doi.org/10.1007/s00253-020-11056-2
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Cent Sci. 2021 Apr 28;7(4):512–33. https://doi.org/10.1021/acscentsci.1c00120
NIH N. Comparative Genomics [Internet]. Genome.gov. 2007. Available from: https://www.genome.gov/11006946/comparative-genomics
de Crécy-Lagard V, Hanson AD. Comparative Genomics ☆. In: Reference Module in Biomedical Sciences [Internet]. Elsevier; 2018 [cited 2021 Oct 8]. p. B9780128012383660000. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128012383660956
Wei L, Liu Y, Dubchak I, Shon J, Park J. Comparative genomics approaches to study organism similarities and differences. J Biomed Inform. 2002 Apr;35(2):142–50. https://doi.org/10.1016/S1532-0464(02)00506-3
Setubal JC, Almeida NF, Wattam AR. Comparative Genomics for Prokaryotes. In: Setubal JC, Stoye J, Stadler PF, editors. Comparative Genomics [Internet]. New York, NY: Springer New York; 2018 [cited 2021 Oct 9]. p. 55–78. (Methods in Molecular Biology; vol. 1704). Available from: http://link.springer.com/10.1007/978-1-4939-7463-4_3
Hunt SY, Barnaby NG, Budowle B, Morse S. Forensic Microbiology. In: Encyclopedia of Microbiology [Internet]. Elsevier; 2009 [cited 2021 Oct 13]. p. 22–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123739445002911
Díaz-Camacho SP, Parra-Unda JR, Ríos-Sicairos J, Delgado-Vargas F. Molecular Identification of the Etiological Agent of Human Gnathostomiasis in an Endemic Area of Mexico. Jpn J Infect Dis. 2020;73(1):44–50. https://doi.org/10.7883/yoken.JJID.2019.180
Boni MF, Lemey P, Jiang X, Lam TT-Y, Perry BW, Castoe TA, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat Microbiol. 2020 Nov;5(11):1408–17. https://doi.org/10.1038/s41564-020-0771-4
López-Durán PA, Fonseca-Coronado S, Lozano-Trenado LM, Araujo-Betanzos S, Rugerio-Trujillo DA, Vaughan G, et al. Nosocomial transmission of extensively drug resistant Acinetobacter baumannii strains in a tertiary level hospital. Ozer EA, editor. PLOS ONE. 2020 Apr 17;15(4):e0231829. https://doi.org/10.1371/journal.pone.0231829
Mizutani S, Yamada T, Yachida S. Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci. 2020 Mar;111(3):766–73. https://doi.org/10.1111/cas.14298
De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N, Siragusa S, et al. Diet influences the functions of the human intestinal microbiome. Sci Rep. 2020 Dec;10(1):4247. https://doi.org/10.1038/s41598-020-61192-y
Cao S, Zhang W, Ding W, Wang M, Fan S, Yang B, et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome. 2020 Dec;8(1):47. https://doi.org/10.1186/s40168-020-00826-9
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989
Capecchi R, Puxeddu I, Pratesi F, Migliorini P. New biomarkers in SLE: from bench to bedside. Rheumatology. 2020 Dec 5;59(Supplement_5):v12–8. https://doi.org/10.1093/rheumatology/keaa484
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform. 2019 Nov 27;20(6):1957–71. https://doi.org/10.1093/bib/bbx170
Telenti A. Integrating metabolomics with genomics. Pharmacogenomics. 2018 Dec;19(18):1377–81. https://doi.org/10.2217/pgs-2018-0155
Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat Rev. 2020 Jun;86:102019. https://doi.org/10.1016/j.ctrv.2020.102019
Grau J, Ben-Gal I, Posch S, Grosse I. VOMBAT: prediction of transcription factor binding sites using variable order Bayesian trees. Nucleic Acids Res. 2006 Jul 1;34(Web Server):W529–33. https://doi.org/10.1093/nar/gkl212
Toro-Domínguez D, Martorell-Marugán J, López-Domínguez R, García-Moreno A, González-Rumayor V, Alarcón-Riquelme ME, et al. ImaGEO: integrative gene expression meta-analysis from GEO database. Kelso J, editor. Bioinformatics. 2019 Mar 1;35(5):880–2. https://doi.org/10.1093/bioinformatics/bty721
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016 Jul;17(7):451–9. https://doi.org/10.1038/nrm.2016.25
Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol. 2019 Jun;20(6):353–67. https://doi.org/10.1038/s41580-019-0108-4
Maharjan M, Tanvir RB, Chowdhury K, Duan W, Mondal AM. Computational identification of biomarker genes for lung cancer considering treatment and non-treatment studies. BMC Bioinformatics. 2020 Dec;21(S9):218. https://doi.org/10.1186/s12859-020-3524-8
Song X, Du R, Gui H, Zhou M, Zhong W, Mao C, et al. Identification of potential hub genes related to the progression and prognosis of hepatocellular carcinoma through integrated bioinformatics analysis. Oncol Rep [Internet]. 2019 Nov 6 [cited 2021 Oct 13]; Available from: http://www.spandidos-publications.com/10.3892/or.2019.7400
Wan Y, Zhang X, Leng H, Yin W, Zeng W, Zhang C. Identifying hub genes of papillary thyroid carcinoma in the TCGA and GEO database using bioinformatics analysis. PeerJ. 2020 Jul 9;8:e9120. https://doi.org/10.7717/peerj.9120
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev. 2016 May;64:101–33. https://doi.org/10.1016/j.neubiorev.2016.02.011
Li W, Luo C, Xie X, Xiao Y, Zhao F, Cai J, et al. Identification of key genes and pathways in syphilis combined with diabetes: a bioinformatics study. AMB Express. 2020 Dec;10(1):83. https://doi.org/10.1186/s13568-020-01009-3
Chen P, Chen Y, Wu W, Chen L, Yang X, Zhang S. Identification and validation of four hub genes involved in the plaque deterioration of atherosclerosis. Aging. 2019 Aug 26;11(16):6469–89. https://doi.org/10.18632/aging.102200
Liu Y, Gu H-Y, Zhu J, Niu Y-M, Zhang C, Guo G-L. Identification of Hub Genes and Key Pathways Associated With Bipolar Disorder Based on Weighted Gene Co-expression Network Analysis. Front Physiol. 2019 Aug 20;10:1081. https://doi.org/10.3389/fphys.2019.01081
Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016 Dec 12;12:2694–718. https://doi.org/10.3762/bjoc.12.267
Silverman RB, Holladay MW. The organic chemistry of drug design and drug action. Third edition. Amsterdam ; Boston: Elsevier/AP, Academic Press, is an imprint of Elsevier; 2014. 517 p. https://doi.org/10.1016/C2009-0-64537-2
Kapetanovic IM. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem Biol Interact. 2008 Jan;171(2):165–76. https://doi.org/10.1016/j.cbi.2006.12.006
Grinter S, Zou X. Challenges, Applications, and Recent Advances of Protein-Ligand Docking in Structure-Based Drug Design. Molecules. 2014 Jul 11;19(7):10150–76. https://doi.org/10.3390/molecules190710150
Acharya C, Coop A, E. Polli J, D. MacKerell A. Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore Approach. Curr Comput Aided-Drug Des. 2011 Mar 1;7(1):10–22. https://doi.org/10.2174/157340911793743547
Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn. 2020 May 6;1–9. https://doi.org/10.1080/07391102.2020.1761882
Arya H, Bhatt TK. Role of Bioinformatics in Subunit Vaccine Design. In: Molecular Docking for Computer-Aided Drug Design [Internet]. Elsevier; 2021 [cited 2021 Oct 9]. p. 425–39. https://doi.org/10.1016/B978-0-12-822312-3.00013-8
Del Tordello E, Rappuoli R, Delany I. Reverse Vaccinology. In: Human Vaccines [Internet]. Elsevier; 2017 [cited 2021 Oct 13]. p. 65–86. https://doi.org/10.1016/B978-0-12-802302-0.00002-9
Chukwudozie OS, Duru VC, Ndiribe CC, Aborode AT, Oyebanji VO, Emikpe BO. The Relevance of Bioinformatics Applications in the Discovery of Vaccine Candidates and Potential Drugs for COVID-19 Treatment. Bioinforma Biol Insights. 2021 Jan;15. https://doi.org/10.1177/11779322211002168
Adu-Bobie J. Two years into reverse vaccinology. Vaccine. 2003 Jan 30;21(7–8):605–10. https://doi.org/10.1016/S0264-410X(02)00566-2
Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000 Oct;3(5):445–50. 10.1016/s1369-5274(00)00119-3
Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect. 2012 Oct;18:109–16. https://doi.org/10.1111/j.1469-0691.2012.03939.x
Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007 Dec;8(1):4. https://doi.org/10.1186/1471-2105-8-4
Dormitzer PR, Ulmer JB, Rappuoli R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol. 2008 Dec;26(12):659–67. https://doi.org/10.1016/j.tibtech.2008.08.002
María RR, Arturo CJ, Alicia JA, Paulina MG, Gerardo AO. The Impact of Bioinformatics on Vaccine Design and Development. In: Afrin F, Hemeg H, Ozbak H, editors. Vaccines [Internet]. InTech; 2017 [cited 2021 Oct 13]. https://doi.org/10.5772/INTECHOPEN.69273
Ishack S, Lipner SR. Bioinformatics and immunoinformatics to support COVID‐19 vaccine development. J Med Virol. 2021 Sep;93(9):5209–11. https://doi.org/10.1002/jmv.27017
Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host Microbe. 2020 Apr;27(4):671-680.e2. https://doi.org/10.1016/j.chom.2020.03.002
Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS, Shantier SW, et al. Design of multi epitope-based peptide vaccine against E protein of human COVID-19: An immunoinformatics approach [Internet]. Bioinformatics; 2020 Feb [cited 2021 Oct 13]. https://doi.org/10.1155/2020/2683286
Naithani N, Sinha S, Misra P, Vasudevan B, Sahu R. Precision medicine: Concept and tools. Med J Armed Forces India. 2021 Jul;77(3):249–57. https://doi.org/10.1016/j.mjafi.2021.06.021
Carrasco-Ramiro F, Peiró-Pastor R, Aguado B. Human genomics projects and precision medicine. Gene Ther. 2017 Sep;24(9):551–61. https://doi.org/10.1038/gt.2017.77
Sunil Krishnan G, Joshi A, Kaushik V. Bioinformatics in Personalized Medicine. In: Singh V, Kumar A, editors. Advances in Bioinformatics [Internet]. Singapore: Springer Singapore; 2021 [cited 2021 Oct 13]. p. 303–15. https://doi.org/10.1007/978-981-33-6191-1_15
Liu L, Song B, Ma J, Song Y, Zhang S-Y, Tang Y, et al. Bioinformatics approaches for deciphering the epitranscriptome: Recent progress and emerging topics. Comput Struct Biotechnol J. 2020;18:1587–604. https://doi.org/10.1016/j.csbj.2020.06.010
Chen L, Lu D, Sun K, Xu Y, Hu P, Li X, et al. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene. 2019 Apr;692:119–25. https://doi.org/10.1016/j.gene.2019.01.001
Bhuvaneshwar K, Belouali A, Singh V, Johnson RM, Song L, Alaoui A, et al. G-DOC Plus – an integrative bioinformatics platform for precision medicine. BMC Bioinformatics. 2016 Dec;17(1):193. https://doi.org/10.1186/s12859-016-1010-0
Jünemann S, Kleinbölting N, Jaenicke S, Henke C, Hassa J, Nelkner J, et al. Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol. 2017 Nov;261:10–23. https://doi.org/10.1016/j.jbiotec.2017.08.012
Muthiah I, Rajendran K, Dhanaraj P, Vallinayagam S. In silico structure prediction, molecular docking and dynamic simulation studies on G Protein-Coupled Receptor 116: a novel insight into breast cancer therapy. J Biomol Struct Dyn. 2021 Sep 2;39(13):4807–15. https://doi.org/10.1080/07391102.2020.1783365
Purkayastha A, Ditty SE, Su J, McGraw J, Hadfield TL, Tibbetts C, et al. Genomic and Bioinformatics Analysis of HAdV-4, a Human Adenovirus Causing Acute Respiratory Disease: Implications for Gene Therapy and Vaccine Vector Development. J Virol. 2005 Feb 15;79(4):2559–72. https://doi.org/10.1128/JVI.79.4.2559-2572.2005
Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol. 2019 Feb;37(2):124–6. https://doi.org/10.1038/s41587-018-0004-z
Wang A, Au KF. Performance difference of graph-based and alignment-based hybrid error correction methods for error-prone long reads. Genome Biol. 2020 Dec;21(1):14. https://doi.org/10.1186/s13059-019-1885-y
McGuire AL, Oliver JM, Slashinski MJ, Graves JL, Wang T, Kelly PA, et al. To share or not to share: A randomized trial of consent for data sharing in genome research: Genet Med. 2011 Nov;13(11):948–55. https://doi.org/10.1097/gim.0b013e3182227589
Oliver JM, Slashinski MJ, Wang T, Kelly PA, Hilsenbeck SG, McGuire AL. Balancing the Risks and Benefits of Genomic Data Sharing: Genome Research Participants’ Perspectives. Public Health Genomics. 2012;15(2):106–14. https://doi.org/10.1159/000334718
Bejleri J, Jirström E, Donovan P, Williams DJ, Pfeiffer S. Diagnostic and Prognostic Circulating MicroRNA in Acute Stroke: A Systematic and Bioinformatic Analysis of Current Evidence. J Stroke. 2021 May 31;23(2):162–82. https://doi.org/10.5853/jos.2020.05085
Ghadamyari F, Heidari MM, Zeinali S, Khatami M, Merat S, Bagherian H, et al. Mutational screening through comprehensive bioinformatics analysis to detect novel germline mutations in the APC gene in patients with familial adenomatous polyposis (FAP). J Clin Lab Anal [Internet]. 2021 May [cited 2021 Nov 17];35(5). Available from: https://doi.org/10.1002/jcla.23768
Sufyan M, Ali Ashfaq U, Ahmad S, Noor F, Hamzah Saleem M, Farhan Aslam M, et al. Identifying key genes and screening therapeutic agents associated with diabetes mellitus and HCV-related hepatocellular carcinoma by bioinformatics analysis. Saudi J Biol Sci. 2021 Oct;28(10):5518–25. https://doi.org/10.1016/j.sjbs.2021.07.068
Dopazo J, Maya-Miles D, García F, Lorusso N, Calleja MÁ, Pareja MJ, et al. Implementing Personalized Medicine in COVID-19 in Andalusia: An Opportunity to Transform the Healthcare System. J Pers Med. 2021 May 26;11(6):475.https://doi.org/10.3390/jpm11060475
Smith DR. The battle for user-friendly bioinformatics. Front Genet [Internet]. 2013 [cited 2021 Nov 17];4. Available from: https://doi.org/10.3389/fgene.2013.00187
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kasandra Aguilar Cázarez, Ernesto Andrade Collantes, Marisol Verdugo Meza, Claudia María de-la-Rocha-Morales, Cruz Fernando López-Carrera, Paúl Alexis López-Durán
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All the intellectual content found in this publication is licensed to the consumer public under the figure of Creative Commons©, unless the author of said content has agreed otherwise or limited said faculty to "Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare©" or "Universidad Anáhuac Mexico©" in writing and expressly.
Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The author retains the economic rights without restrictions and guarantees the journal the right to be the first publication of the work. The author is free to publish his article in any other medium, such as an institutional repository.