mRNA-based COVID-19 vaccines: a new age

Authors

DOI:

https://doi.org/10.36105/psrua.2021v1n2.03

Keywords:

mRNA vaccines, CVnCoV, mRNA-1273, BNT162

Abstract

The development of vaccines based on mRNA technology involves more than a decade of hard work and important advances. Many clinical trials are underway to test these vaccines for the treatment and prevention of infections and diseases, such as cancer, cytomegalovirus, Ebola, hepatitis C virus, human immunodeficiency virus, influenza, malaria, rabies, and Zika. However, after the COVID-19 pandemic in 2020, it played a leading role in an important race to develop therapeutic strategies, mainly a vaccine, against the disease. mRNA technology allows the quick and safe creation of vaccines and large scale production. There are currently mRNA vaccines against COVID-19 (Pfizer-BioNtech® and Moderna®) that have received the emergency use authorization of regulatory entities, including the FDA in the USA, the EMA in Europe, and many others, in the process of obtaining clinical data so that they are available in a short time. On the other hand, phase 3 clinical trials continue their course. In preliminary analyses, remarkably high levels of efficacy have been reported, reaching around 95% effectiveness against mild-moderate disease and up to 100% against severe disease and death. The various clinical trials show a robust safety profile, equal to or better than that of many commonly used vaccines, although they are not free of adverse events. Despite this, there are still significant technical challenges and doubts due to the lack of long-term information. mRNA vaccines represent a new era in vaccination and one of the most important advances in health, science, and technology in recent times. In this review, we will show the basic principles of mRNA vaccines and focus on the vaccines used against COVID-19. Scientific evidence shows that mRNA vaccines are one of the best options not only as a defense against the SARS-CoV-2 pandemic but also as a novel technology against various diseases.

Downloads

Download data is not yet available.

PLUMX metrics

References

1. Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol.
2021;21(2):83-100. https://doi.org/10.1038/s41577-020-00479-7
2. World Health Organization. Child mortality and causes of death. WHO.
https://www.who.int/gho/child_health/mortality/mortality_under_five_text/en/ (2020)
3. Pardi, N; Hogan, MJ; Porter, F.W.; Weissman, D. mRNA Vaccines—A New Era in Vaccinology. Nat Rev Drug Discov.
2018;17:261-79. https://doi.org/10.1038/nrd.2017.243.
4. Li J, Zhang C, Shan H. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.
https://doi.org/10.3389/fimmu.2019.00594
5. Robbiani, DF, Gaebler, C.; Muecksch, F.; Lorenzi, J.C.C.;Wang, Z.; Cho, A.; Agudelo M, Barnes CO, Gazumyan A, Finkin S, et al. Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals. Nature. 2020;584:437-42.
https://doi.org/10.1038/s41586-020-2456-9
6. Weissman D. mRNA transcript therapy. Expert Rev Vaccines. 2015;14:265-81.
https://doi.org/10.1586/14760584.2015.973859
7. Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleosidemodified,
protein-encoding mRNA. Nucleic Acids Res. 2011;39:e142. https://doi.org/10.1093/nar/gkr695
8. Kallen KJ, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive® vaccines. Hum Vaccin
Immunother. 2013;9:2263-2276.
9. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol. 2012;9:1319-30.
10. Zhang Z, Ohto U, Shibata T, et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity. 2016;45:737–48.
https://doi.org/10.1016/j.immuni.2016.09.011
11. Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol. 2015;22:109-15. https://doi.org/10.1038/nsmb.2943
12. Isaacs A, Cox RA, Rotem Z. Foreign nucleic acids as the stimulus to make interferon. Lancet. 1963;2:113-16.
https://doi.org/10.1016/S0140-6736(63)92585-6
13. Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of
nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165-75.
https://doi.org/10.1016/j.immuni.2005.06.008
14. Brito LA, Chan M, Shaw CA, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 2014;22:2118-29. https://doi.org/10.1038/mt.2014.133.
15. Van Lint S, et al. The ReNAissanCe of mRNA-based cancer therapy. Expert Rev Vaccines. 2015;14:235-51.
https://doi.org/10.1586/14760584.2015.957685
16. Geall AJ, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109:14604-09.
https://doi.org/10.1073/pnas.1209367109
17. Pardi N, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various
routes. J Control Release. 2015;217:345-51.
https://doi.org/10.1016/j.jconrel.2015.08.007
18. Laczkó, D.; Hogan, M.J.; Toulmin, S.A.; Hicks, P.; Lederer, K.; Gaudette, B.T.; Castaño, D.; Amanat, F.; Muramatsu, H.; Oguin, T.H.; et al. A Single Immunization with Nucleoside-Modified MRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity. 2020;53:724–32.e7.
https://doi.org/10.1016/j.immuni.2020.07.019
19. Rauch, S.; Roth, N.; Schwendt, K.; Fotin-Mleczek, M.; Mueller, S.O.; Petsch, B. mRNA Based SARS-CoV-2 Vaccine
Candidate CVnCoV Induces High Levels of Virus Neutralizing Antibodies and Mediates Protection in Rodents. Biorxiv
2020. https://doi.org/10.1038/s41541-021-00311-w
20. Lu, J.; Lu, G.; Tan, S.; Xia, J.; Xiong, H.; Yu, X.; Qi, Q.; Yu, X.; Li, L.; Yu, H.; et al. A COVID-19 MRNA Vaccine Encoding SARS-CoV-2 Virus-like Particles Induces a Strong Antivirallike
Immune Response in Mice. Cell Res. 2020;30:936–39.
https://doi.org/10.1038/s41422-020-00392-7
21. Lederer, K.; Castaño, D.; Atria, D.G.; Oguin, T.H.; Wang, S.; Manzoni, T.B.; Muramatsu, H.; Hogan, M.J.; Amanat, F.;
Cherubin, P.; et al. SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity.
2020;53:1281–95.e5. https://doi.org/10.1016/j.immuni.2020.11.009
22. Corbett KS, Flynn B, Foulds KE, Francica, JR, Boyoglu-Barnum S, Werner, A.P, Flach B, O’Connell S, Bock KW, Minai M. et al. Evaluation of the MRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020;383:1544-55. https://doi.org/10.1056/NEJMoa2024671
23. Lambert PH, Ambrosino DM, Andersen SR, Baric RS, Black SB, Chen RT, et al. Consensus summary report for CEPI/BC March 12-13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine. 2020;38:4783-91. https://doi.org/10.1016/j.vaccine.2020.05.064
24. Graham, B.S. Rapid COVID-19 Vaccine Development. Science. 2020;368:945–46.
https://doi.org/10.1126/science.abb8923
25. Vogel, A.B.; Kanevsky, I.; Che, Y.; Swanson, K.A.; Muik, A.; Vormehr, M.; Kranz, L.M.; Walzer, K.C.; Hein, S.; Güler, A.; et al. A Prefusion SARS-CoV-2 Spike RNA Vaccine Is Highly Immunogenic and Prevents Lung Infection in Non-Human Primates. Biorxiv 2020.
26. Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 MRNA Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature. 2020;586:567-71.
27. Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.;
Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.e15.
28. Xu, X. & Gao, X. Immunological responses against SARScoronavirus infection in humans. Cell Mol Immunol.
2004;1:119-22.
29. Zhong X, Yang H, Guo Z-F, Sin W-YF, Chen W, Xu J, et al. B-cell responses in patients who have recovered from
severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein. J Virol.
2005;79:3401-8.
30. Probst J, Weide B, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, Pascolo S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 2007;14:1175-80.
31. Kariko K, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased
translational capacity and biological stability. Mol Ther. 2008;16:1833-40.
32. Fotin-Mleczek M, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother. 2011;34:1–15.
33. COVID-19 Vaccines and Allergic Reactions. Available online: https://www.Cdc.Gov/Coronavirus/2019Ncov/Vaccines/Safety/Allergic-Reaction.Html
34. Edwards DK, et al. Adjuvant effects of a sequenceengineered mRNA vaccine: translational profiling
demonstrates similar human and murine innate response. J Transl Med. 2017;15:1.
35. Theofilopoulos AN, Baccala R, Beutler B, Kono DH. Type I interferons (α/β) in immunity and autoimmunity. Annu
Rev Immunol. 2005;23:307-36.
36. Kannemeier C, et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci USA. 2007;104:6388-93.
37. Fischer S, et al. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood. 2007;110:2457-65.
38. Fulginiti V.A., Eller J.J., Sieber O.F., Joyner J.W., Minamitani M., Meiklejohn G. Respiratory virus immunization. I. A
field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an
alum - precipitated respiratory syncytial virus vaccine. Am J Epidemiol. 1969;89:435-48.
39. Kim, H. W. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated
vaccine. A J Epidemiol. 2020;89:422-34.
40. https://www.pfizer.com/science/coronavirus/updates
41. BioNTech. COVID-19. https://biontech.de/covid-19
42. BioNTech and Pfizer announce regulatory approval from German authority Paul-Ehrlich-Institut to commence first
clinical trial of COVID-19 vaccine candidates [press release]. New York, NY: Pfizer Inc.; April 22, 2020.
43. Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.;
Maurus, D.; et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature.
2020;586:594-99.
44. Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman,
A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson,
K.A.; et al. Phase I/II Study of COVID-19 RNA Vaccine
BNT162b1 in Adults. Nature. 2020;586:589-93.
45. Walsh, E.E.; Frenck, R.W., Jr.; Falsey, A.R.; Kitchin, N.;
Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan,
M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two
RNA-Based Covid-19 Vaccine Candidates. N Engl J Med.
2020;383:2439-50.
46. He Y, Zhou Y, Liu S, et al. Receptor-binding domain of
SARS-CoV spike protein induces highly potent neutralizing
antibodies: implication for developing subunit vaccine.
Biochem Biophys Res Commun. 2004;324:773-81.
47. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure
of the 2019-nCoV spike in the prefusion conformation.
Science. 2020;367:1260-63.
48. Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.;
Maurus, D.; et al. COVID-19 Vaccine BNT162b1 Elicits Human Antibody and TH1 T Cell Responses. Nature.
2020;586:594-99.
49. Koyama T, et al. Bull World Health Organ. 2020;98:495-504.
50. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.;
Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine. N Engl J Med. 2020.
51. Graham, B. S., Gilman, M. S. A. & McLellan, J. S. Structure-Based Vaccine Antigen 412 Design. Annu Rev Med.
2019;70:91-104.
52. McLellan, J. S. et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion414 specific neutralizing
antibody. Science. 340:1113-17.
53. https://www.modernatx.com/modernas-work-potentialvaccine-against-covid-19
54. Widge, A.T.; Rouphael, N.G.; Jackson, L.A.; Anderson, E.J.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Durability of Responses after SARS-CoV-2 MRNA-1273 Vaccination. N Engl J Med. 2021;384:80-2.
55. Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison,
M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 MRNA-1273 Vaccine in
Older Adults. N Engl J Med. 2020.
56. Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu- Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; et al. Evaluation of the MRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020;383:1544-55.
57. Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; et al. An MRNA Vaccine against SARS-CoV-2—Preliminary Report. N Engl J Med. 2020;383:1920-31.
58. Bottazzi ME, Strych U, Hotez PJ, Corry DB. Coronavirus vaccine-associated lung immunopathology-what is the
significance?. Microbes Infect. 2020;22:403-04.
59. Baden LR, Sahly HME, Essink B, Kotloff K, Frey S, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384:403-16.
60. Rauch S, Gooch K, Hall Y, Salguero FJ, Dennis MJ, Gleeson FV, Harris D, Ho C, et al. mRNA vaccine CVnCoV protects non-human primates from SARS-CoV-2 challenge infection. bioRxiv 2020.12.23.424138.
https://doi.org/10.1101/2020.12.23.424138
61. https://ourworldindata.org/covid-vaccinations
62. Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and Challenges in the Delivery of mRNAbased
Vaccines. Pharmaceutics. 2020;12:102. https://doi.org/10.3390/pharmaceutics12020102
63. Robert A. Feldman, Rainard Fuhr, Igor Smolenov, Amilcar Ribeiro, Lori Panther, Mike Watson, et al. mRNA vaccines
against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy
adults in phase 1 randomized clinical trials. Vaccine. 2019;37:3326-34.
https://doi.org/10.1016/j.vaccine.2019.04.074
64. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox J. M, et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell. 2017;168:1114-25.e10. https://doi.org/10.1016/j.cell.2017.02.017
65. Sara Sousa Rosa, Duarte MF Prazeres, Ana M Azevedo, Marco PC Marques. mRNA vaccines manufacturing:
challenges and bottlenecks. Vaccine. 2021;39:2190-2200. https://doi.org/10.1016/j.vaccine.2021.03.038
66. Draft landscape and tracker of COVID-19 candidate vaccines (who.int). https://www.who.int/publications/m/item/draftlandscape-of-covid-19

Downloads

Published

2021-08-25

How to Cite

Rodrigo Martínez-Espinosa, R., & Gabriela Ramírez-Vélez, G. (2021). mRNA-based COVID-19 vaccines: a new age. Proceedings of Scientific Research Universidad Anáhuac. Multidisciplinary Journal of Healthcare, 1(2), 18–30. https://doi.org/10.36105/psrua.2021v1n2.03